K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
QT
0
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NX
0
NM
1
AH
Akai Haruma
Giáo viên
13 tháng 1 2024
Bạn cần bổ sung thêm điều kiện $a,b,c,d$ là số dương nhé. Nếu không với $a=-4, b=-3, c=-2, d=-1$ thì đpcm là sai.
Lời giải:
Ta có:
$\frac{b+d}{a+b+c+d}-\frac{1}{2}=\frac{b+d-(a+c)}{2(a+b+c+d)}$
$=\frac{(b-a)+(d-c)}{2(a+b+c+d)}>0$ do $b>a, d> c$ và $a,b,c,d$ là các số dương
$\Rightarrow \frac{b+d}{a+b+c+d}> \frac{1}{2}$
OP
1
DC
0
NK
1 tháng 2 2016
Ta luôn có |x - y| và x - y luôn cùng tính chẵn lẻ (x, y nguyên)
Do đó S cùng tính chẵn lẻ với (a - b) + (b - c) + (c - d) + (d - a) (Bỏ GTTĐ)
Ta có:
(a - b) + (b - c) + (c - d) + (d - a)
= a - b + b - c + c - d + d - a
= 0
Vì 0 chẵn => S chẵn (ĐPCM)