Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có a+ b = c + d
=> b.(a+b) = b(c+d) => a.b + b2 = bc + bd mà ab = cd + 1 nên
cd + 1 + b2 = bc + bd => bc - cd + bd - b2 = 1 => c(b - d) + b.(d - b) = 1 => (c - b)(b - d) = 1 . Vì a, b, c, d nguyên nên c - b và b - d cũng nguyên. do đó c - b = b - d = 1 hoặc c - b = b -d = -1
c - b = b - d => c + d = 2.b Mà c + d = a+ b => 2.b = a+ b => b = a => đpcm
Từ a+b = c+d => a=c+d-b Từ 2 điều này => (c+d-b).b+1=cd
Mà ab+1=cd cb+db-\(b^2\)+1=cd
=> cb+db-\(b^2\)-cd=-1
Hay \(b^2\)-cd-cb-db=1
=> ( \(b^2\)-cb)-(db-cd)=1
=> b(b-c)-d(b-c)=1
=> (b-c).(b-d)=1
Vì a,b,c,d \(\in\) Z => \(\left\{{}\begin{matrix}b-c\in Z\\b-d\in Z\end{matrix}\right.\)
=> b-c=b-d=1
Hoặc b-c=b-d=-1
=> c=d hoặc d=c
Vậy c=d(ĐPCM)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\) ; \(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\)\(\Rightarrow\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}\)\(=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
\(\Rightarrow\frac{a+c}{b+d}=\frac{a-c}{b-d}\)\(\left(đpcm\right)\)
Bài 2 : đề bài này chỉ cần a,b>0 , ko cần phải thuộc N* đâu
a, Áp dụng bất đẳng thức AM-GM cho 2 số lhoong âm a,b ta được :
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{ab}{ba}}=2\) . Dấu "=" xảy ra khi a=b
b , Áp dụng BĐT AM-GM cho 2 số không âm ta được : \(a+b\ge2\sqrt{ab}\)
\(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{ab}}=\dfrac{2}{\sqrt{ab}}\)
Nhân vế với vế ta được :
\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2.2.\dfrac{\sqrt{ab}}{\sqrt{ab}}=4\left(đpcm\right)\)
Dấu "="xảy ra tại a=b
Bài 1.
Vì a, b, c, d \(\in\) N*, ta có:
\(\dfrac{a}{a+b+c+d}< \dfrac{a}{a+b+c}< \dfrac{a}{a+b}\)
\(\dfrac{b}{a+b+c+d}< \dfrac{b}{a+b+d}< \dfrac{b}{a+b}\)
\(\dfrac{c}{a+b+c+d}< \dfrac{c}{b+c+d}< \dfrac{c}{c+d}\)
\(\dfrac{d}{a+b+c+d}< \dfrac{d}{a+c+d}< \dfrac{d}{c+d}\)
Do đó \(\dfrac{a}{a+b+c+d}+\dfrac{b}{a+b+c+d}+\dfrac{c}{a+b+c+d}+\dfrac{d}{a+b+c+d}< M< \left(\dfrac{a}{a+b}+\dfrac{b}{a+b}\right)+\left(\dfrac{c}{c+d}+\dfrac{d}{c+d}\right)\)hay 1<M<2.
Vậy M không có giá trị là số nguyên.
+ \(b=\frac{a+c}{2}\Rightarrow2b=a+c.\) (1)
+ \(c=\frac{2bd}{b+d}\Rightarrow bc+cd=2bd\)(2)
Thay (1) vào (2) ta có
\(bc+cd=\left(a+c\right)d=ad+cd\Rightarrow bc=ad\Rightarrow\frac{a}{b}=\frac{c}{d}\left(dpcm\right)\)
Vì \(\frac{a}{b}< \frac{c}{d}\)
⇒ \(ad< bc\)
⇒ \(2018ad< 2018bc\)
⇒ \(2018ad+cd< 2018bc+cd\)
⇒ \(\left(2018a+c\right)d< \left(2018b+d\right)c\)
⇒ \(\frac{2018a+c}{2018b+d}< \frac{c}{d}\)
Vậy \(\frac{2018a+c}{2018b+d}< \frac{c}{d}\) (ĐPCM)