Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Áp dụng BĐT cô si cho 2 hai số dương \(a;b\) ta có:
\(a+b\ge2\sqrt{ab}\)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{1}{\sqrt{ab}}\)
\(\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Dấu "=" xảy ra khi \(\Leftrightarrow a=b\)
xét hiệu \(\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}=\frac{a+b}{ab}-\frac{4}{a+b}\)
\(=\frac{\left(a+b\right)^2}{ab\left(a+b\right)}-\frac{4ab}{ab\left(a+b\right)}\)
\(=\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\)
\(=\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\)
vì (a-b)2>=0
mà a,b>0 nên ab>0;a+b>0
\(\Rightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}-\frac{4}{ab}\ge0\)
hay \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{ab}\left(dpcm\right)\)
Từ BĐT trên ,ta có:
\(\dfrac{1}{a}\)+\(\dfrac{1}{b}\) \(\geq\) \(\dfrac{4}{a+b}\)
\(\Leftrightarrow\) \(\dfrac{a+b}{ab}\) \(\geq\) \(\dfrac{4}{a+b}\)
\(\Leftrightarrow\) (a+b)(a+b) \(\geq\) 4ab
\(\Leftrightarrow\) (a+b)2 \(\geq\) 4ab
\(\Leftrightarrow\) a2 +2ab+b2\(\geq\) 4ab
\(\Leftrightarrow\) a2+2ab+b2-4ab \(\geq\) 0
\(\Leftrightarrow\) a2-2ab+b2 \(\geq\) 0
\(\Leftrightarrow\) (a-b)2 \(\geq\) 0 (luôn đúng)
Dấu '=' xảy ra khi và chỉ khi a=b
Từ đó ta chứng minh được BĐT : \(\dfrac{1}{a}\) +\(\dfrac{1}{b}\)\(\geq\) \(\dfrac{4}{a+b}\)
\(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{a+b}{ab}=\dfrac{\left(a+b\right)^2}{ab\left(a+b\right)}\) (1)
\(\dfrac{4}{a+b}=\dfrac{4ab}{ab\left(a+b\right)}\) (2)
ta có:
\(\left(a+b\right)^2\ge\left(a-b\right)^2\) và \(\left(a-b\right)^2\ge4ab\)
nên \(\left(a+b\right)^2\ge4ab\) (3)
từ (1), (2) và (3) suy ra \(\dfrac{\left(a+b\right)^2}{ab\left(a+b\right)}\ge\dfrac{4ab}{ab\left(a+b\right)}\) hay \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)(đpcm)
Áp dụng BĐT \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\), ta có:
\(\dfrac{4}{2a+b+c}+\dfrac{4}{a+2b+c}+\dfrac{4}{a+b+2c}\)
\(\le\dfrac{1}{4}\left(\dfrac{4}{a+b}+\dfrac{4}{a+c}+\dfrac{4}{a+b}+\dfrac{4}{c+b}+\dfrac{4}{a+c}+\dfrac{4}{b+c}\right)\)
\(=\dfrac{2}{a+b}+\dfrac{2}{a+c}+\dfrac{2}{b+c}\)
\(\le\dfrac{1}{4}\left(\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{a}+\dfrac{2}{c}+\dfrac{2}{b}+\dfrac{2}{c}\right)\)
\(=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\left(\text{đ}pcm\right)\)
Dấu "=" xảy ra khi a = b = c
Ta có:
\(a^4+b^4\ge a^3+b^3\) \(\left(1\right)\)
\(\Leftrightarrow\) \(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\) (vì \(a+b=2\))
\(\Leftrightarrow\) \(a^4+b^4\ge a^3b+ab^3\)
\(\Leftrightarrow\) \(a^4-a^3b-ab^3+b^4\ge0\)
\(\Leftrightarrow\) \(a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\) \(\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow\) \(\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) \(\left(2\right)\)
Bất đẳng thức \(\left(2\right)\) luôn đúng (do \(\left(a-b\right)^2\ge0\) và \(a^2+ab+b^2=\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}\ge0\) ), mà các phép biến đổi trên tương đương nên bất đẳng thức \(\left(1\right)\) được chứng minh.
Đẳng thức trên xảy ra khi và chỉ khi \(a=b\)