K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2018

\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)\(=\frac{ac}{c\left(ab+a+1\right)}+\frac{abc}{ac\left(bc+b+1\right)}+\frac{c}{ac+c+1}\)

\(=\frac{ac}{abc+ac+c}+\frac{1}{abc^2+abc+ac}+\frac{c}{ac+c+1}=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}\)

\(=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}=\frac{ac+c+1}{ac+c+1}=1\)

30 tháng 4 2018

\(abc=1\)

=> \(a=\frac{1}{bc}\)\(c=\frac{1}{ab}\)

Thay \(a=\frac{1}{bc}\)và \(c=\frac{1}{ab}\) vào \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)ta được:

\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)\(=\frac{\frac{1}{bc}}{\frac{1}{bc}.b+\frac{1}{bc}+1}+\frac{b}{bc+b+1}+\frac{\frac{1}{ab}}{\frac{1}{bc}.\frac{1}{ab}+\frac{1}{ab}+1}\)

\(=\frac{\frac{1}{bc}}{\frac{b}{bc}+\frac{1}{bc}+\frac{bc}{bc}}+\frac{b}{bc+b+1}+\frac{\frac{1}{ab}}{\frac{1}{ab}\left(\frac{1}{bc}+1\right)+\frac{ab}{ab}}\)

\(=\frac{\frac{1}{bc}}{\frac{bc+b+1}{bc}}+\frac{b}{bc+b+1}+\frac{\frac{1}{ab}}{\frac{1}{ab}\left(\frac{1}{bc}+\frac{bc}{bc}+ab\right)}\)

\(=\frac{\frac{1.bc}{bc}}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{\frac{1}{bc}+\frac{bc}{bc}+\frac{1}{bc}.b}\)

\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{\frac{1}{bc}+\frac{bc}{bc}+\frac{b}{bc}}\)

\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{\frac{bc+b+1}{bc}}\)

\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1.bc}{bc+b+1}\)

\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}\)

\(=\frac{1+b+bc}{bc+b+1}=\frac{bc+b+1}{bc+b+1}=1\)(đpcm)

10 tháng 12 2017

Ta có: \(\frac{1}{ab+a+1}+\frac{b}{bc+b+1}+\frac{1}{abc+bc+b}\)

\(=\frac{bc}{ab^2c+abc+bc}+\frac{b}{bc+b+1}+\frac{1}{1+bc+b}\)

\(=\frac{bc}{b+1+bc}+\frac{b}{bc+b+1}+\frac{1}{1+bc+b}\)

\(=\frac{bc+b+1}{bc+b+1}=1\left(đpcm\right)\)

14 tháng 12 2016

\(A=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=1\)

Từ \(abc=1\Rightarrow a=\frac{1}{bc}\) thay vào ta có:

\(A=\frac{\frac{1}{bc}}{\frac{1}{bc}\cdot b+\frac{1}{bc}+1}+\frac{b}{bc+b+1}+\frac{c}{c\cdot\frac{1}{bc}+c+1}\)

\(=\frac{\frac{1}{bc}}{\frac{1}{c}+\frac{1}{bc}+1}+\frac{b}{bc+b+1}+\frac{c}{\frac{1}{b}+c+1}\)

\(=\frac{1}{bc\left(\frac{1}{bc}+\frac{1}{c}+1\right)}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}\)

\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}\)

\(=\frac{1+b+bc}{bc+b+1}=1\)

11 tháng 1 2018

A B C M

Kẻ trung tuyến AM, AM = 1/2 BC = MB = MC

a) Nêu góc B = 30 độ thì góc C bằng 60 độ

Tam giác MAC cân tại M có góc C bằng 60 độ nên nó là tam giác đều => AC = MC = 1/2 BC

b) Nếu AC = 1/2 BC => Tam giác MAC đều vì AC = 1/2 BC = MC = MA

=> Góc C bằng 60 độ

Trong tam giác ABC có góc A = 90 độ, góc C = 60 độ => góc B = 30 độ

19 tháng 8 2020

sao lại làm thế này

4 tháng 12 2015

BÀI 1 : Ta có tam giác ABC có góc B=góc C=>tam giác ABC cân tại A =>AB=AC

BÀI 2:TA có:tam giác ABC có AB=AC=>Tam giác ABC cân tại A mak koa góc A = 6O độ =>tam giác ABC đều=>AB=AC=BC

                          TICK NHA, MK GIẢI CHI TIẾT LẮM RÙI ĐÓ

 

Câu 2: 

a: Xét ΔABC có AM/AB=AN/AC

nên MN//BC

b: Xét ΔMBC và ΔNCB có

MB=NC

\(\widehat{MBC}=\widehat{NCB}\)

BC chung

Do đó: ΔMBC=ΔNCB

Suy ra: \(\widehat{ICB}=\widehat{IBC}\)

hay ΔIBC cân tại I