
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(A=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=1\)
Từ \(abc=1\Rightarrow a=\frac{1}{bc}\) thay vào ta có:
\(A=\frac{\frac{1}{bc}}{\frac{1}{bc}\cdot b+\frac{1}{bc}+1}+\frac{b}{bc+b+1}+\frac{c}{c\cdot\frac{1}{bc}+c+1}\)
\(=\frac{\frac{1}{bc}}{\frac{1}{c}+\frac{1}{bc}+1}+\frac{b}{bc+b+1}+\frac{c}{\frac{1}{b}+c+1}\)
\(=\frac{1}{bc\left(\frac{1}{bc}+\frac{1}{c}+1\right)}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}\)
\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}\)
\(=\frac{1+b+bc}{bc+b+1}=1\)

A B C M
Kẻ trung tuyến AM, AM = 1/2 BC = MB = MC
a) Nêu góc B = 30 độ thì góc C bằng 60 độ
Tam giác MAC cân tại M có góc C bằng 60 độ nên nó là tam giác đều => AC = MC = 1/2 BC
b) Nếu AC = 1/2 BC => Tam giác MAC đều vì AC = 1/2 BC = MC = MA
=> Góc C bằng 60 độ
Trong tam giác ABC có góc A = 90 độ, góc C = 60 độ => góc B = 30 độ

Câu 2:
a: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
b: Xét ΔMBC và ΔNCB có
MB=NC
\(\widehat{MBC}=\widehat{NCB}\)
BC chung
Do đó: ΔMBC=ΔNCB
Suy ra: \(\widehat{ICB}=\widehat{IBC}\)
hay ΔIBC cân tại I
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)\(=\frac{ac}{c\left(ab+a+1\right)}+\frac{abc}{ac\left(bc+b+1\right)}+\frac{c}{ac+c+1}\)
\(=\frac{ac}{abc+ac+c}+\frac{1}{abc^2+abc+ac}+\frac{c}{ac+c+1}=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}\)
\(=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}=\frac{ac+c+1}{ac+c+1}=1\)
\(abc=1\)
=> \(a=\frac{1}{bc}\); \(c=\frac{1}{ab}\)
Thay \(a=\frac{1}{bc}\)và \(c=\frac{1}{ab}\) vào \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)ta được:
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)\(=\frac{\frac{1}{bc}}{\frac{1}{bc}.b+\frac{1}{bc}+1}+\frac{b}{bc+b+1}+\frac{\frac{1}{ab}}{\frac{1}{bc}.\frac{1}{ab}+\frac{1}{ab}+1}\)
\(=\frac{\frac{1}{bc}}{\frac{b}{bc}+\frac{1}{bc}+\frac{bc}{bc}}+\frac{b}{bc+b+1}+\frac{\frac{1}{ab}}{\frac{1}{ab}\left(\frac{1}{bc}+1\right)+\frac{ab}{ab}}\)
\(=\frac{\frac{1}{bc}}{\frac{bc+b+1}{bc}}+\frac{b}{bc+b+1}+\frac{\frac{1}{ab}}{\frac{1}{ab}\left(\frac{1}{bc}+\frac{bc}{bc}+ab\right)}\)
\(=\frac{\frac{1.bc}{bc}}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{\frac{1}{bc}+\frac{bc}{bc}+\frac{1}{bc}.b}\)
\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{\frac{1}{bc}+\frac{bc}{bc}+\frac{b}{bc}}\)
\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{\frac{bc+b+1}{bc}}\)
\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1.bc}{bc+b+1}\)
\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}\)
\(=\frac{1+b+bc}{bc+b+1}=\frac{bc+b+1}{bc+b+1}=1\)(đpcm)