Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho ba số a,b,c thỏa mãn a.b.c = 1 . CMR: \(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+bc+b}=1\)
Lời giải:
Dựa vào điều kiện $abc=1$ ta có:
\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+ca+c}=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{1+ca+c}\)
\(=\frac{1}{ab+a+1}+\frac{a}{abc+ab+a}+\frac{ab}{ab+ab.ca+ab.c}\)
\(=\frac{1}{ab+a+1}+\frac{a}{1+ab+a}+\frac{ab}{ab+a+1}=\frac{1+a+ab}{ab+a+1}=1\)
Ta có đpcm.
Ta có: \(a.b.c=1\)
\(=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+bc+b}\)
\(=\frac{1}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{a}{abc.a+abc+ab}\)
\(=\frac{1}{ab+a+1}+\frac{ab}{1+ab+a}+\frac{a}{a+1+ab}\)
\(=\frac{1+ab+a}{1+ab+a}\)
\(=1.\)
\(\Rightarrow\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+bc+b}=1\left(đpcm\right).\)
Chúc bạn học tốt!
cho ba số a,b,c thỏa mãn a.b.c = 1 . CMR: \(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+bc+b}=1\)
cho ba số a,b,c thỏa mãn a.b.c = 1 . CMR: \(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+bc+b}=1\)
\(S=\frac{abc}{abc+a+ab}+\frac{1}{1+b+bc}+\frac{bc}{bc+bc^2+c^2ab}=\frac{bc}{bc+1+b}+\frac{1}{1+b+bc}+\frac{b}{b+bc+1}\)
\(=\frac{1+b+bc}{1+bc+b}=1\rightarrow S=1\)
Bài làm:
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
=> \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=0\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=0\) (1)
Mà \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\), cách CM như sau:
\(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)
Tương tự: \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\) ; \(\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2}{ca}\)
Cộng vế 3 BĐT trên lại ta sẽ được: \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
Thay vào (1) ta được:
\(0=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\ge3\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\le0\)
Dấu "=" xảy ra khi: \(a=b=c\)
\(A=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=1\)
Từ \(abc=1\Rightarrow a=\frac{1}{bc}\) thay vào ta có:
\(A=\frac{\frac{1}{bc}}{\frac{1}{bc}\cdot b+\frac{1}{bc}+1}+\frac{b}{bc+b+1}+\frac{c}{c\cdot\frac{1}{bc}+c+1}\)
\(=\frac{\frac{1}{bc}}{\frac{1}{c}+\frac{1}{bc}+1}+\frac{b}{bc+b+1}+\frac{c}{\frac{1}{b}+c+1}\)
\(=\frac{1}{bc\left(\frac{1}{bc}+\frac{1}{c}+1\right)}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}\)
\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}\)
\(=\frac{1+b+bc}{bc+b+1}=1\)