Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho ba số a,b,c thỏa mãn a.b.c = 1 . CMR: \(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+bc+b}=1\)
Lời giải:
Dựa vào điều kiện $abc=1$ ta có:
\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+ca+c}=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{1+ca+c}\)
\(=\frac{1}{ab+a+1}+\frac{a}{abc+ab+a}+\frac{ab}{ab+ab.ca+ab.c}\)
\(=\frac{1}{ab+a+1}+\frac{a}{1+ab+a}+\frac{ab}{ab+a+1}=\frac{1+a+ab}{ab+a+1}=1\)
Ta có đpcm.
Ta có: \(a.b.c=1\)
\(=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+bc+b}\)
\(=\frac{1}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{a}{abc.a+abc+ab}\)
\(=\frac{1}{ab+a+1}+\frac{ab}{1+ab+a}+\frac{a}{a+1+ab}\)
\(=\frac{1+ab+a}{1+ab+a}\)
\(=1.\)
\(\Rightarrow\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+bc+b}=1\left(đpcm\right).\)
Chúc bạn học tốt!
cho ba số a,b,c thỏa mãn a.b.c = 1 . CMR: \(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+bc+b}=1\)
cho ba số a,b,c thỏa mãn a.b.c = 1 . CMR: \(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+bc+b}=1\)
cho ba số a,b,c thỏa mãn a.b.c = 1 . CMR: \(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+bc+b}=1\)
*Từ abc=1 => a;b;c khác 0
Khi đó : \(\frac{1}{ab+a+1}\) = \(\frac{1}{ab+a+1}\) .\(\frac{bc}{bc}\) = \(\frac{bc}{ab.bc+abc+bc}\) = \(\frac{bc}{abc.b+abc+bc}\) = \(\frac{bc}{bc+b+1}\)
(do abc=1)
*Do abc = 1 => \(\frac{1}{abc+bc+b}\) = \(\frac{1}{bc+b+1}\)
Khi đó : \(\frac{1}{ab+a+1}\) + \(\frac{b}{bc+b+1}\) + \(\frac{1}{abc+bc+b}\)
= \(\frac{bc}{bc+b+1}\) + \(\frac{b}{bc+b+1}\) +\(\frac{1}{bc+b+1}\)
= \(\frac{bc+b+1}{bc+b+1}\) = 1
Hay \(\frac{1}{ab+a+1}\) + \(\frac{b}{bc+b+1}\) + \(\frac{1}{abc+bc+b}\) = 1 (đpcm).
*Chú ý : Đây là phương pháp thế số bởi chữ !
Ta có: \(\frac{1}{ab+a+1}+\frac{b}{bc+b+1}+\frac{1}{abc+bc+b}\)
\(=\frac{bc}{ab^2c+abc+bc}+\frac{b}{bc+b+1}+\frac{1}{1+bc+b}\)
\(=\frac{bc}{b+1+bc}+\frac{b}{bc+b+1}+\frac{1}{1+bc+b}\)
\(=\frac{bc+b+1}{bc+b+1}=1\left(đpcm\right)\)