Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=a\left(a^2-1\right)\left(a^2-4+5\right)=a\left(a-1\right)\left(a+1\right)\left[\left(a-2\right)\left(a+2\right)+5\right]\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5a\left(a^2-1\right)\)
Đến đây bạn lập luận đi !
a,\(a^2\left(a+1\right)+2a\left(a+1\right)=\left(a^2+2a\right)\left(a+1\right)\)
\(=a\left(a+2\right)\left(a+1\right)⋮3⋮2\)
\(⋮6\left(ĐPCM\right)\)
b,\(a\left(2a-3\right)-2a\left(a+1\right)\)
\(=2a^2-3a-2a^2-2a\)
\(=-5a⋮5\left(ĐPCM\right)\)
khai triển ra, ta dc:
25^n+5^n-18^n-12^n (1)
=(25^n-18^n)-(12^n-5^n)
=(25-18)K-(12-5)H = 7(K-H) chia hết cho 7
.giải thích: 25^n-18^n=(25-18)[25^(n-1)+ 25^(n-2).18^1 +.....+18^n]=7K vì đặt K là [25^(n-1)+ 25^(n-2).18^1 +.....+18^n, cái (12-5)H cx tương tự
Biểu thức đó đã chia hết cho 7 rồi, bây h cần chứng minh biểu thức đó chia hết cho 13 là xong
từ (1) nhóm ngược lại để chia hết cho 13. Cụ thể là (25^n-12^n)-(18^n-5^n) chia hết cho 13, cách chứng minh chia hết cho 13 này cx tương tự như cách c.minh chia hết cho 7
.1Mà biểu thức này vừa chia hết cho 7, vừa chia hết cho 13 nên chia hết cho (7.13)=91
Xong!!!
\(a^5-a\)
\(=a\left(a^4-1\right)\)
\(=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=a\left(a^2-1\right)\left(a^2-4+5\right)\)
\(=a\left(a^2-1\right)\left(a^2-4\right)+5a\left(a^2-1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)+5a\left(a-1\right)\left(a+1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)\)
Số hạng 1 là tích của 5 thừa số nguyên liên tiếp nên nó chia hết cho 2,3 và 5
\(\Rightarrow\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮30\)
Số hàng 2 có a - 1, a và a + 1 là 3 số nguyên liên tiếp \(\Rightarrow\left(a-1\right)a\left(a+1\right)⋮6\Rightarrow5\left(a-1\right)a\left(a+1\right)⋮30\)
Vậy \(a\in Z\)thì \(a^5-a⋮30\)
\(CMR:\forall m,n\in Z\)
\(a)n^2\times(n^2-1)⋮12\)
\(b)n^2\times(n^4-1)⋮60\)
\(c)mn\times(m^4-n^4)⋮30\)
Thực hiện phép chia, ta được:Thương của A chia cho B là n3 – 6n2 + 11n – 6Ta có: 3 2 3 226 11 6 12 6 6( 1) .( 1) 6.(2 1)n n n n n n nn n n n n− + − = − + − −= − + + − −Vì (n-1).n.(n+1) là tích của 3 số nguyên liên tiếp nên tích đó vừa chia hết cho 2, vừa chia hết cho 3 suy ra tích đó chia hết cho 6Mặt khác 6(2n-n2-1) chia hết cho 6=> Th¬ng cña phÐp chia A cho B lµ béi sè cña 6
\(A=x^4-6x^3+27x^2-54x+32\)
\(=x^4-5x^3+22x^2-32x-x^3+5x^2-22x+32\)
\(=x\left(x^3-5x^2+22x-32\right)-\left(x^3-5x^2+22x-32\right)\)
\(=\left(x-1\right)\left(x^3-5x^2+22x-32\right)\)
\(=\left(x-1\right)\left(x^3-3x^2+16x-2x^2+6x-32\right)\)
\(=\left(x-1\right)\left[x\left(x^2-3x+16\right)-2\left(x^2-3x+16\right)\right]\)
\(=\left(x-1\right)\left(x-2\right)\left(x^2-3x+16\right)\)
Vì \(x\in Z\)=> x-1;x-2 là 2 số nguyên liên tiếp => \(\left(x-1\right)\left(x-2\right)⋮2\)
\(\Rightarrow A=\left(x-1\right)\left(x-2\right)\left(x^2-3x+16\right)⋮2\) hay A là số chẵn (đpcm)
\(A=x^4-6x^3+27x^2-54x+32\)
\(=x^4-x^3-5x^3+5x^2+22x^2-22x-32x+32\)
\(=\left(x-1\right)\left(x^3-5x^2+22x-32\right)\)
\(=\left(x-1\right)\left[x^2\left(x-2\right)-3x\left(x-2\right)+16\left(x-2\right)\right]\)
\(=\left(x-1\right)\left(x-2\right)\left(x^2-3x+16\right)\)
Vì \(\left(x-1\right)\left(x-2\right)⋮2\) nên A là số chẵn với mọi x thuộc Z
a5 - a
= a(a4 - 1)
= a(a2 - 1)(a2 + 1)
= a(a - 1)(a + 1)[(a2 - 4) + 5]
= a(a - 1)(a + 1)(a - 2)(a + 2) + 5a(a - 1)(a + 1)
Ta có:
a(a - 1)(a + 1)(a - 2)(a + 2) chia hết cho 30
5a(a - 1)(a + 1) chia hết cho 30
=> a5 - a chia hết cho 30