K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2020

a) (x + y)2 = (x + y)(x + y) = x2 + xy + xy + y2 = x2 + 2xy + y2 (đpcm)

b) (x - y)2 = (x - y)(x - y) = x2 - xy - xy + y2 = x2 - 2xy + y2 (đpcm)

a) Ta có: \(VT=\left(x+y\right)^2\)

\(=\left(x+y\right)\cdot\left(x+y\right)\)

\(=x^2+xy+yx+y^2\)

\(=x^2+2xy+y^2=VP\)(đpcm)

b) Ta có: \(VP=x^2-2xy+y^2\)

\(=x^2-xy-xy+y^2\)

\(=x\left(x-y\right)-y\left(x-y\right)\)

\(=\left(x-y\right)\cdot\left(x-y\right)\)

\(=\left(x-y\right)^2=VT\)(đpcm)

20 tháng 4 2017

a) (x + 3)(x2 – 3x + 9) – (54 + x3) = (x + 3)(x2 – 3x + 32 ) - (54 + x3)

= x3 + 33 - (54 + x3)

= x3 + 27 - 54 - x3

= -27

b) (2x + y)(4x2 – 2xy + y2) – (2x – y)(4x2 + 2xy + y2)

= (2x + y)[(2x)2 – 2 . x . y + y2] – (2x – y)(2x)2 + 2 . x . y + y2]

= [(2x)3 + y3]- [(2x)3 - y3]


= (2x)3 + y3- (2x)3 + y3= 2y3

20 tháng 4 2017

Bài giải:

a) (x + 3)(x2 – 3x + 9) – (54 + x3) = (x + 3)(x2 – 3x + 32 ) - (54 + x3)

= x3 + 33 - (54 + x3)

= x3 + 27 - 54 - x3

= -27

b) (2x + y)(4x2 – 2xy + y2) – (2x – y)(4x2 + 2xy + y2)

= (2x + y)[(2x)2 – 2 . x . y + y2] – (2x – y)(2x)2 + 2 . x . y + y2]

= [(2x)3 + y3]- [(2x)3 - y3]

= (2x)3 + y3- (2x)3 + y3= 2y3

1 tháng 10 2017

a, (x+3)(x2-3x+9) - (54+x3)

=x3 + 27 - 54 - x3= - 27

b, (2x +y)(4x2-2xy+y2)-(2x-y)(4x2+2xy+y2)

=8x3+y3 - (8x3 -y3)=2y3

17 tháng 8 2017

Câu a :

\(VT=\) \(\left(x-1\right)\left(x^2+x+1\right)=x^3-1^3=VP\)

Câu b :

\(VT=\)\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4-y^4=VP\)

Tương tự bạn khai triển là ra nhé

17 tháng 8 2017

a) \(\left(x-1\right)\left(x^2+x+1\right)\)

=\(x^3+x^2+x-x^2-x-1=x^3-1\)

\(\RightarrowĐPCM\)

b)\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)\)

\(=x^4-x^3y+x^3y-x^2y^2+x^2y^2-xy^3+xy^3-y^4=x^4-y^4\)

`a, (4x^3y^2 - 8x^2y + 10xy) : 2xy`

`= 2x^2y - 4x + 5`.

`b, 7x^4y^2 - 2x^2y^2 - 5x^3y^4 : 3x^2y`

`= 7/3 x^2y - 3/2y - 5/3xy^3`

1 tháng 5 2019

1) x2-2xy+y2-x+y
(=) (x-y)2-(x-y)
(=) [(x-y)-1].(x-y)
(=) (x-y-1).(x-y)
C= (x-y)(x2+xy+y2)-x(x2-y)+y(y2-x)
(=) x3-y3-x3+xy+y3-xy

(=)(x3-x3)+(-y3+y3)+(xy-xy)
(=) 0

1 tháng 5 2019

đúng nha

18 tháng 12 2018

Hướng dẫn :\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{xy+yz+zx}{xyz}=0\Rightarrow xy+yz+zx=0\)

Thay vào:\(x^2+2yz=x^2+yz+yz=x^2+yz-xy-zx=x\left(x-y\right)-z\left(x-y\right)=\left(x-y\right)\left(x-z\right)\)

Tương tự thay vào mà quy đồng

HQ
Hà Quang Minh
Giáo viên
12 tháng 1

a)

\(\begin{array}{l}\left( {2x - 5y} \right)\left( {2x + 5y} \right) + {\left( {2x + 5y} \right)^2}\\ = \left( {2x + 5y} \right)\left( {2x - 5y + 2x + 5y} \right)\\ = \left( {2x + 5y} \right).4x\\ = 2x.4x + 5y.4x\\ = 8{x^2} + 20xy\end{array}\)

b)

\(\begin{array}{l}\left( {x + 2y} \right)\left( {{x^2} - 2xy + 4{y^2}} \right) + \left( {2x - y} \right)\left( {4{x^2} + 2xy + {y^2}} \right)\\ = {x^3} + {\left( {2y} \right)^3} + {\left( {2x} \right)^3} - {y^3}\\ = {x^3} + 8{y^3} + 8{x^3} - {y^3}\\ = \left( {{x^3} + 8{x^3}} \right) + \left( {8{y^3} - {y^3}} \right)\\ = 9{x^3} + 7{y^3}\end{array}\)