\(-9x^2+24x-21< 0\) với mọi x

B) \(x^2+9y^2+6...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2017

a. \(x^2+3x+5\)

\(=x^2+2.x^2.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)

=> đpcm

23 tháng 7 2017

b. \(4x^2+5x+7\)

\(=\left(2x\right)^2-2.2x.\dfrac{5}{4}+\dfrac{25}{16}+\dfrac{87}{16}\)

= \(\left(2x+\dfrac{5}{4}\right)^2\) + \(\dfrac{87}{16}\) \(\ge\dfrac{87}{16}\)

=> đpcm

17 tháng 10 2016

a) \(x^2-4x+5\)

\(\left(x^2-2.2x+4\right)+1\)

\(\left(x-2\right)^2+1\)

Ta co: \(\left(x-2\right)^2>=0\)

=>\(\left(x-2\right)^2+1>=1>0\)

b) \(x^2-4xy+5y^2\)

=\(\left(x^2-4xy+4y^2\right)+y^2\)

\(\left(x-2y\right)^2+y^2\)

Ta co: \(\left(x-2y\right)^2>=0\)

            \(y^2>=0\)

=> \(\left(x-2y\right)^2+y^2>=0\)

c) \(3-2x-x^2\)

\(-\left(x^2+2x\right)+3\)

\(-\left(x^2+2.1x+1-1\right)+3\)

\(-\left(x+1\right)^2+4\)

Hình như câu này sai đề ...

17 tháng 10 2016

a) \(x^2-4x+5\)

\(=x^2-4x+4+1\)

\(=\left(x-2\right)^2+1>0\)

b) \(x^2-4xy+5y^2\)

\(=x^2-4xy+4y^2+y^2\)

\(=\left(x-2y\right)^2+y^2\)

Dấu = xảy ra khi: \(x=y=0\)

c) \(-3-2x-x^2\)

\(=-2-x^2-2x-1\)

\(=-2-\left(x+1\right)^2=-\left[2+\left(x+1\right)^2\right]< 0\)

2 tháng 9 2018

bạn cố tìm mọi cánh biến vế trái thành 1 dạng bình phương

rồi nó sẽ racau trả lời , gợi ý đó

13 tháng 7 2019

sử dụng hằng đẳng thức 1.2

3 tháng 10 2017

A) x2+4y22+z22-4x-6z+15>0 <=> (x2-2×2×x+22)+4y2+(z2-2×3×z+32) +(15 -22-32) >0

<=>(x-2)2+4y22+(z-3)2

3 tháng 10 2017

B) giải

(2X)2+ 2×2X×1 +1 >=0 với mọi X (   (2x+1) )

=> (2x+1)2+2 >0

10 tháng 6 2017

a) -x2 + 6x - 10
= -(x2 - 6x + 10)
= -(x2 - 6x + 9 + 1)
= -[(x - 3)2 + 1]

Ta có: (x - 3)2 + 1 > 0 với mọi x
=> -[(x - 3)2 + 1] < 0 với mọi x

b) -2x2 - 4x - 5
= -(2x2 + 4x + 5)
= -(2x2 + 4x + 2 + 3)
= -[(\(\sqrt{2x^2}\)+\(\sqrt{2}\))2 + 3]
Ta có: (\(\sqrt{2x^2}\)+\(\sqrt{2}\))2 + 3 > 0 với mọi x
=>  -[(\(\sqrt{2x^2}\)+\(\sqrt{2}\))2 + 3] < 0 với mọi x

10 tháng 6 2017

a) \(-x^2+6x-10=-\left(x^2-6x+9\right)-1=-\left(x-3\right)^2-1< 0\forall x\)

b)  \(-2x^2-4x-5=-2\left(x^2+2x+1\right)-3=-\left(x+1\right)^2-3< 0\forall x\)

23 tháng 6 2018

Bài 1 : Tạm thời ko biết giải -_- 

Bài 2 : 

\(a)\) Đặt \(A=x^2+x+1\) ta có : 

\(A=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)

Vậy \(A>0\) với mọi x, y 

\(b)\) Đặt \(B=-4x^2-4x-2\) ta có : 

\(-B=4x^2+4x+2\)

\(-B=\left(4x^2+4x+1\right)+1\)

\(-B=\left(2x+1\right)^2+1\ge1\)

\(B=-\left(2x+1\right)^2-1\le-1< 0\)

Vậy \(B< 0\) với mọi x, y 

\(c)\) Đặt \(C=x^2+xy+y^2+1\) ta có : 

\(8C=8x^2+8xy+8y^2+8\)

\(8C=\left(4x^2+8xy+4y^2\right)+4x^2+4y^2+1\)

\(8C=\left(2x+2y\right)^2+\left(2x\right)^2+\left(2y\right)^2+1\ge1\)

\(C=\frac{\left(2x+2y\right)^2+\left(2x\right)^2+\left(2y\right)^2+1}{8}\ge\frac{1}{8}>0\)

Vậy \(C>0\) với mọi x, y 

Chúc bạn học tốt ~ 

23 tháng 6 2018

Aigiúpmìnhbài1với =)))

Mơnlắm =))))

12 tháng 9 2017

Giải:

a) \(x^2-6x+10\)

\(=x^2+6x+9+1\)

\(=\left(x+3\right)^2+1\)

\(\left(x+3\right)^2\ge0\forall x\)

Nên \(\left(x+3\right)^2+1\ge1\forall x\)

Vậy \(\left(x+3\right)^2+1>0\forall x\).

b) \(4x-x^2-5\)

\(=-x^2+4x-4-1\)

\(=-\left(x^2-4x+4\right)-1\)

\(=-\left(x+2\right)^2-1\)

\(-\left(x-2\right)^2\le0\forall x\)

Nên \(-\left(x+2\right)^2-1\le-1\forall x\)

Vậy \(-\left(x+2\right)^2-1< 0\forall x\).

Chúc bạn học tốt!

12 tháng 9 2017

\(\text{a) }x^2-6x+10\\ =x^2-6x+9+1\\ =\left(x^2-6x+9\right)+1\\ =\left(x^2-2\cdot x\cdot3+3^2\right)+1\\ =\left(x-3\right)^2+1\\ \text{Ta có : }\left(x-3\right)^2\ge0\forall x\\ \Rightarrow\left(x-3\right)^2+1\ge1\forall x\\ \Rightarrow\left(x-3\right)^2+1>0\forall x\left(đpcm\right)\\ \text{Vậy biểu thức luôn nhận giá trị dương }\forall x\)

\(\text{b) }4x-x^2-5\\ =-x^2+4x-4-1\\ =-\left(x^2-4x+4\right)-1\\ =-\left(x^2-2\cdot x\cdot2+2^2\right)-1\\ =-\left(x-2\right)^2-1\\ \text{Ta có : }\left(x-2\right)^2\ge0\forall x\\ \Rightarrow-\left(x-2\right)^2\le0\forall x\\ \Rightarrow-\left(x-2\right)^2-1\le-1\forall x\\ \Rightarrow-\left(x-2\right)^2-1< 0\forall x\left(đpcm\right)\\ \text{Vậy biểu thức luôn nhận giá trị âm }\forall x\)