Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có đồng dư thức
\(3\equiv16\)(mod 13)
\(3^n\equiv16^n\)(mod 13)
\(3\equiv16\)(mod 13)
\(3^2\equiv16^2\)(mod 13)
\(16\equiv3\)(mod 13)
\(16^n\equiv3^n\)(mod 13)
\(4\equiv17\)(mod 13)
Suy ra: Ta có:
\(3^{n+2}+4^{2n+1}\equiv16^n\cdot16^2+3^n\cdot17\)(mod 13)
Suy ra: \(3^{n+2}+4^{2n+1}\equiv3^n\cdot16^2+3^n\cdot17\equiv3^n\left(16^2+17\right)\equiv3^n\cdot273\)(mod 13)
Vậy \(3^{n+2}+4^{2n+1}⋮13\)
Lời giải:
a)
Ta có \(A=7.5^{2n}+12.6^n=7.25^n+12.6^n\)
Vì \(25\equiv 6\pmod {19}\Rightarrow 7.25^n\equiv 7.6^n\pmod {19}\)
Do đó \(A\equiv 7.6^n+12.6^n\equiv 19.6^n\equiv 0\pmod {19}\)
Ta có đpcm.
b) Đặt biểu thức là $B$ .
Dễ thấy \(1924,1920\vdots 4\Rightarrow B\vdots 4(1)\)
Có \(2003\equiv -7\pmod {30}\Rightarrow 2003^{2004^n}\equiv (-7)^{2004^n}\equiv 7^{2004^n}\pmod {30}\)
Mặt khác \(7^4\equiv 1\pmod {30}\) , \(2004^n\vdots 4\) nên \(7^{2004^n}\equiv 1\pmod {30}\)
Từ hai điều trên suy ra \(2003^{2004^n}\equiv 1\pmod {30}\) . Đặt \(2003^{2004^n}=30k+1\)
Khi đó \(1924^{2003^{2004^n}}+1920=1924^{30k+1}+1924\)
Vì \(UCLN(1924,31)=1\) nên áp dụng định lý Fermat nhỏ:
\(1924^{30}\equiv 1\pmod {31}\Rightarrow 1924^{30k}\equiv 1\pmod{31}\)
\(\Rightarrow 1924^{30k+1}\equiv 1924\pmod {31}\Rightarrow 1924^{30k+1}+1920\equiv 1924+1920\equiv 3844\equiv 0\pmod{31}\)
Do đó \(B\vdots 31\) \((2)\)
Từ \((1),(2)\) và \((31,4)=1\Rightarrow B\vdots (31.4=124)\)
c)
\(5^{2n+1}+2^{n+4}+2^{n+1}=5^{2n+1}+2^{n+1}(2^3+1)\)
\(=5^{2n+1}+18.2^n=5.25^n+18.2^n\)
\(\equiv 5.2^{n}+18.2^n\pmod {23}\)
\(\Leftrightarrow 5^{2n+1}+2^{n+4}+2^{n+1}\equiv 23.2^n\equiv 0\pmod {23}\)
Ta có đpcm.
Lời giải:
Theo định lý Fermat nhỏ thì \(2^{12}\equiv 1\pmod {13}\) nên ta sẽ xét số dư của \(2^{2n}\) khi chia cho \(12\)
Gọi số dư của \(2^{2n}\) khi chia \(12\) là \(x\) với \(x=\overline {0,11}\)
Ta có \(2^{2n}-x\vdots 12\Leftrightarrow \left\{\begin{matrix} 2^{2n}-x\vdots 4\\ 2^{2n}-x\vdots 3\end{matrix}\right.\)
Vì \(2^{2n}\vdots 4\) với mọi $n$ nguyên dương nên \(2^{2n}-x\vdots 4\Leftrightarrow x\vdots 4\) $(1)$
\(2^{2n}\equiv 1\pmod 3\Rightarrow 2^{2n}-x\vdots 3\Leftrightarrow 1-x\vdots 3\Leftrightarrow x\equiv 1\pmod 3\) $(2)$
Từ \((1),(2)\Rightarrow x=4\)
Do đó \(2^{2n}\equiv 4\pmod {12}\Rightarrow 2^{2^{2n}}+10=2^{12k+4}+10\equiv 2^4+10\equiv 0\pmod {13}\)
Do đó ta có đpcm
Chỉnh sửa 1 chút: \(n\in\mathbb{N}^*\)mới đúng chứ không phải \(n\in\mathbb{N}\)
\(\dfrac{3^{10}}{83}=\dfrac{\left(3^4\right)^{10}}{83}=\dfrac{81^{10}}{83}=\dfrac{\left(83-2\right)^{10}}{83}=k-\dfrac{2^{10}}{83}\)
=\(k-\dfrac{1024}{83}=k-\dfrac{\left(996+28\right)}{83}=k-12-\dfrac{28}{83}\\ \)
\(K\in Z\): phần dư: 83-28=55
mình lộn câu 2 là 10\(a^2+5b^2+12ab+4â-6b+13>=0\) 0 dấu = xảy ra khi nào
ta có : 22^2n=24n=(24)n=16n
ta thấy rằng số nào có tận cùng bằng 6 khi nâng lên lũy thừa nào cũng tận cùng bằng 6
suy ra 16n=(...6)
ta có: (...6)+10=(...6)
mà (...6) luôn chia hết cho 13
suy ra (22^2n +10) chia hết cho 3
CHÚC BẠN HỌC TỐT!!!!!
Ta có: \(2^{2n}=4^n\) \(\equiv4\)( mod 12)
+) Giải thích: Vì n = 1 => \(4\equiv4\left(mod12\right)\)
Còn n > 1 ta có: \(4^{n-1}\equiv1\left(mod3\right)\Rightarrow4^n\equiv4\left(mod12\right)\)( nhân cả với 4)
Đặt: \(4^n=12k+4\)
=> \(2^{2^{2n}}=2^{12k+4}=2^{12k}.2^4\equiv1^k.16\equiv3\left(mod13\right)\)
=> \(2^{2^n}+10\equiv3+10\equiv13\equiv0\left(mod13\right)\)
=> \(2^{2^{2n}}+10⋮13\)
@Nguyễn Linh Chi : Cô ơi vậy đang mod 3 mà nhân 2 vế với 4 thì thành mod 12 ạ ?