K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 8 2017

Lời giải:

a)

Ta có \(A=7.5^{2n}+12.6^n=7.25^n+12.6^n\)

\(25\equiv 6\pmod {19}\Rightarrow 7.25^n\equiv 7.6^n\pmod {19}\)

Do đó \(A\equiv 7.6^n+12.6^n\equiv 19.6^n\equiv 0\pmod {19}\)

Ta có đpcm.

b) Đặt biểu thức là $B$ .

Dễ thấy \(1924,1920\vdots 4\Rightarrow B\vdots 4(1)\)

\(2003\equiv -7\pmod {30}\Rightarrow 2003^{2004^n}\equiv (-7)^{2004^n}\equiv 7^{2004^n}\pmod {30}\)

Mặt khác \(7^4\equiv 1\pmod {30}\) , \(2004^n\vdots 4\) nên \(7^{2004^n}\equiv 1\pmod {30}\)

Từ hai điều trên suy ra \(2003^{2004^n}\equiv 1\pmod {30}\) . Đặt \(2003^{2004^n}=30k+1\)

Khi đó \(1924^{2003^{2004^n}}+1920=1924^{30k+1}+1924\)

\(UCLN(1924,31)=1\) nên áp dụng định lý Fermat nhỏ:

\(1924^{30}\equiv 1\pmod {31}\Rightarrow 1924^{30k}\equiv 1\pmod{31}\)

\(\Rightarrow 1924^{30k+1}\equiv 1924\pmod {31}\Rightarrow 1924^{30k+1}+1920\equiv 1924+1920\equiv 3844\equiv 0\pmod{31}\)

Do đó \(B\vdots 31\) \((2)\)

Từ \((1),(2)\)\((31,4)=1\Rightarrow B\vdots (31.4=124)\)

AH
Akai Haruma
Giáo viên
6 tháng 8 2017

c)

\(5^{2n+1}+2^{n+4}+2^{n+1}=5^{2n+1}+2^{n+1}(2^3+1)\)

\(=5^{2n+1}+18.2^n=5.25^n+18.2^n\)

\(\equiv 5.2^{n}+18.2^n\pmod {23}\)

\(\Leftrightarrow 5^{2n+1}+2^{n+4}+2^{n+1}\equiv 23.2^n\equiv 0\pmod {23}\)

Ta có đpcm.

9 tháng 10 2019

\(7.5^{2n}+12.6^n=7.5^{2n}+19.6^n-7.6^n\)

\(=7\left(5^{2n}-6^n\right)+19.6^n=7.\left(25^n-6^n\right)+19.6^n\)

\(=7.19.A\left(x\right)+19.6^n\)⋮ 19

22 tháng 9 2020

Trước hết ta chứng minh BĐT

\(\frac{2k-1}{2k}< \frac{\sqrt{3k-2}}{\sqrt{3k+1}}\left(1\right)\)

Thật vậy, (1) \(\Leftrightarrow\left(2k-1\right)\sqrt{3k+1}< 2k\sqrt{3k-2}\)\(\Leftrightarrow\left(4k^2-4k+1\right)\left(3k+1\right)< 4k^2\left(3k-2\right)\)

\(\Leftrightarrow12k^3-8k^2-k+1< 12k^3-8k^2\)\(\Leftrightarrow k-1>0\left(\forall k\ge2\right)\)

Trong (1), lần lượt thay k bằng 1,2,...,n ta được:

\(\frac{1}{2}\le\frac{\sqrt{1}}{\sqrt{4}},\frac{3}{4}\le\frac{\sqrt{4}}{\sqrt{7}},....,\frac{2n-1}{2n}< \frac{\sqrt{3n-2}}{\sqrt{3n+1}}\)

Nhân từng vế các BĐT trên ta có:

\(\frac{1}{2}.\frac{3}{4}....\frac{2n-1}{2n}< \frac{\sqrt{1}}{\sqrt{4}}.\frac{\sqrt{4}}{\sqrt{7}}...\frac{\sqrt{3n-2}}{\sqrt{3n+1}}=\frac{1}{\sqrt{3n+1}}\)

AH
Akai Haruma
Giáo viên
14 tháng 7 2019

Lời giải:

a)
Để \(A=\frac{2n}{n+1}\in\mathbb{Z}\) thì \(2n\vdots n+1\)

\(\Leftrightarrow 2(n+1)-2\vdots n+1\)

\(\Leftrightarrow 2\vdots n+1\)

\(\Rightarrow n+1\in\left\{\pm 1;\pm 2\right\}\)

\(\Rightarrow n\in\left\{-2;0; -3;1\right\}\)

b)

Để \(B=\frac{n+4}{2-n}\in\mathbb{Z}\) thì \(n+4\vdots 2-n\)

\(\Leftrightarrow 6-(2-n)\vdots 2-n\)

\(\Leftrightarrow 6\vdots 2-n\)

\(\Rightarrow 2-n\in\left\{\pm 1;\pm 2;\pm 3; \pm 6\right\}\)

\(\Rightarrow n\in\left\{3;1;4; 0; 5;-1; 8; -4\right\}\)

Thử lại thấy đúng. Vậy...........

AH
Akai Haruma
Giáo viên
18 tháng 6 2019

Lời giải:

a)
Để \(A=\frac{2n}{n+1}\in\mathbb{Z}\) thì \(2n\vdots n+1\)

\(\Leftrightarrow 2(n+1)-2\vdots n+1\)

\(\Leftrightarrow 2\vdots n+1\)

\(\Rightarrow n+1\in\left\{\pm 1;\pm 2\right\}\)

\(\Rightarrow n\in\left\{-2;0; -3;1\right\}\)

b)

Để \(B=\frac{n+4}{2-n}\in\mathbb{Z}\) thì \(n+4\vdots 2-n\)

\(\Leftrightarrow 6-(2-n)\vdots 2-n\)

\(\Leftrightarrow 6\vdots 2-n\)

\(\Rightarrow 2-n\in\left\{\pm 1;\pm 2;\pm 3; \pm 6\right\}\)

\(\Rightarrow n\in\left\{3;1;4; 0; 5;-1; 8; -4\right\}\)

Thử lại thấy đúng. Vậy...........

6 tháng 1 2018

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(a+b\right)\left(\dfrac{x^4}{a}+\dfrac{y^4}{b}\right)\ge\left(x^2+y^2\right)^2=1\)

\(\Rightarrow VT=\dfrac{x^4}{a}+\dfrac{y^4}{b}\ge\dfrac{1}{a+b}=VP\)

Dấu "=" khi \(\dfrac{x^2}{a}=\dfrac{y^2}{b}\)\(\Rightarrow\dfrac{x^2}{a}=\dfrac{y^2}{b}=\dfrac{x^2+y^2}{a+b}=\dfrac{1}{a+b}\Rightarrow a+b=\dfrac{a}{x^2}\Rightarrow\left(a+b\right)^n=\dfrac{a^n}{x^{2n}}\)

Xét \(VT\) của biểu thức cần c.m:

\(VT=\left(\dfrac{x^2}{a}\right)^n+\left(\dfrac{y^2}{b}\right)^n=2\cdot\dfrac{x^{2n}}{a^n}\)

\(VP=\dfrac{2}{\left(a+b\right)^n}=\dfrac{2}{\dfrac{a^n}{x^{2n}}}=2\cdot\dfrac{x^{2n}}{a^n}\)

Vậy có ĐPCM