\(7.5^{2n}+12.6^n⋮19\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2019

\(7.5^{2n}+12.6^n=7.5^{2n}+19.6^n-7.6^n\)

\(=7\left(5^{2n}-6^n\right)+19.6^n=7.\left(25^n-6^n\right)+19.6^n\)

\(=7.19.A\left(x\right)+19.6^n\)⋮ 19

AH
Akai Haruma
Giáo viên
6 tháng 8 2017

Lời giải:

a)

Ta có \(A=7.5^{2n}+12.6^n=7.25^n+12.6^n\)

\(25\equiv 6\pmod {19}\Rightarrow 7.25^n\equiv 7.6^n\pmod {19}\)

Do đó \(A\equiv 7.6^n+12.6^n\equiv 19.6^n\equiv 0\pmod {19}\)

Ta có đpcm.

b) Đặt biểu thức là $B$ .

Dễ thấy \(1924,1920\vdots 4\Rightarrow B\vdots 4(1)\)

\(2003\equiv -7\pmod {30}\Rightarrow 2003^{2004^n}\equiv (-7)^{2004^n}\equiv 7^{2004^n}\pmod {30}\)

Mặt khác \(7^4\equiv 1\pmod {30}\) , \(2004^n\vdots 4\) nên \(7^{2004^n}\equiv 1\pmod {30}\)

Từ hai điều trên suy ra \(2003^{2004^n}\equiv 1\pmod {30}\) . Đặt \(2003^{2004^n}=30k+1\)

Khi đó \(1924^{2003^{2004^n}}+1920=1924^{30k+1}+1924\)

\(UCLN(1924,31)=1\) nên áp dụng định lý Fermat nhỏ:

\(1924^{30}\equiv 1\pmod {31}\Rightarrow 1924^{30k}\equiv 1\pmod{31}\)

\(\Rightarrow 1924^{30k+1}\equiv 1924\pmod {31}\Rightarrow 1924^{30k+1}+1920\equiv 1924+1920\equiv 3844\equiv 0\pmod{31}\)

Do đó \(B\vdots 31\) \((2)\)

Từ \((1),(2)\)\((31,4)=1\Rightarrow B\vdots (31.4=124)\)

AH
Akai Haruma
Giáo viên
6 tháng 8 2017

c)

\(5^{2n+1}+2^{n+4}+2^{n+1}=5^{2n+1}+2^{n+1}(2^3+1)\)

\(=5^{2n+1}+18.2^n=5.25^n+18.2^n\)

\(\equiv 5.2^{n}+18.2^n\pmod {23}\)

\(\Leftrightarrow 5^{2n+1}+2^{n+4}+2^{n+1}\equiv 23.2^n\equiv 0\pmod {23}\)

Ta có đpcm.

6 tháng 3 2018

Ta có: \(E=36^n+19^n-2^n\cdot2\)

Mặt khác: \(36\equiv19\equiv2\)(mod 17)

Do đó: \(VT\equiv2^n+2^n-2^n\cdot2\equiv0\)(mod 17)

Vậy .................

3 tháng 8 2016

Tôi cũng là của FC Real Madrid ở Hà Nam.

Chúng mình kết bạn nhé.hihi.

21 tháng 5 2018

Ta chứng minh \(2^2+4^2+...+\left(2n\right)^2=\frac{2n\left(n+1\right)\left(2n+1\right)}{3}\)  (1)  

với mọi n \(\in\)N* , bằng phương pháp quy nạp 

Với n = 1, ta có \(2^2=4=\frac{2.1\left(1+1\right)\left(2.1+1\right)}{3}\)

=> (1) đúng khi n = 1 

Giả sử đã có (1) đúng khi n = k , k\(\in\)N* , tức là giả sử đã có : 

\(2^2+4^2+...+\left(2k\right)^2=\frac{2k\left(k+1\right)\left(2k+1\right)}{3}\)

Ta chứng minh (1) đúng khi n = k + 1 , tức là ta sẽ chứng minh 

\(2^2+4^2+...+\left(2k\right)^2+\left(2k+2\right)^2=\frac{2k\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{3}\)

=> Từ giả thiết quy nạp ta có : 

\(2^2+4^2+...+\left(2k\right)^2+\left(2k+2\right)^2=\frac{2k\left(k+1\right)\left(2k+1\right)}{3}+\left(2k+2\right)^2\)

                                                                    \(=\frac{2\left(k+1\right)\left(2k^2+k+6k+6\right)}{3}\)

                                                                    \(=\frac{2\left(k+1\right)\left[2k\left(k+2\right)+3\left(k+2\right)\right]}{3}\)

                                                                    \(=\frac{2\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{3}\)

Từ các chứng minh trên , suy ra (1) đúng với mọi n \(\in\)N*                                             

21 tháng 5 2018

ai quan tam lam chi

15 tháng 8 2020

a) ta có với n nguyên dương n2+n+1=n2+2n+1-n=(n+1)2-n

như vậy có n2<n2+n+1<n2+2n+1 hay n2<n2+n+1<(n+1)2

mà n2 và (n+1)2 là 2 số chính phương liên tiếp

=> n2+n+1 không là số chính phương với mọi n nguyên dương (đpcm)