\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\)không là số tự nhiên.

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bn chỉ cần tính kết quả là được vì nó là phân số ko phải số tự nhiên hihi 66366377377272

29 tháng 3 2016

mẫu chung: 2^6.3.5.7...99

gọi tổng đó là A

A=1+1/2+1/3+...+1/100

A=k1+k2+k3+...+k100/2^6.3.5.7.9...100

ta thấy phân so k^64/64 sẽ bằng có tử bằng: 3.5.7...99. mà các phân số khác có tử đều chẵn (vì các phân số lẻ đều có tử có thừa số 2^6, phân số chẵn sẽ có ít nhất 1 thừa số 2)

=> tử của A lẻ nên ko chia hết cho 2. mà mẫu A=2^6.3.5.7...99 chia hết 2

=> A ko phải số tự nhiên

chị trình bày còn lủng củng. em hiểu rồi trình bày lại nhé

22 tháng 5 2018

Đặt \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)

Ta có : \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}>0\)

\(\Rightarrow A>1+0=1\)(1)

Ta lại có :

\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< 1+1-\frac{1}{100}< 2\)(2)

Từ (1) và (2) => 1<A<2

=> A không phải là số tự nhiên

Ta có : \(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+.......+\frac{1}{99.100}\)

\(\Leftrightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.......+\frac{1}{99}-\frac{1}{100}=1+1-\frac{1}{100}\)\(=\frac{199}{100}< 2\)

Lại có : \(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}>1\)

Nên : \(1< 1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}< 2\)

Vậy \(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}\) ko phải là số tự nhiên 

8 tháng 4 2019

bạn ơi bài này có trong bùi văn tuyên

8 tháng 4 2019

\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{100}< 1\)

\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{100}< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)

\(A< 1-\frac{1}{100}\)

\(A< \frac{99}{100}< 1\)

\(\Rightarrow A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{99}+\frac{1}{100}\text{ ko phải là 1 số tự nhiên ( đpcm )}\)

CM A <2 và A>1 là xong !

17 tháng 4 2019

+\(A>1\)

Ta có :\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{2018^2}+\frac{1}{2019^2}>1\) 1

+\(A< 2\)

Ta có:\(1=1\)

         \(\frac{1}{2^2}< \frac{1}{1.2}\)

         \(\frac{1}{3^2}< \frac{1}{2.3}\)

         ...........................

         \(\frac{1}{2019^2}< \frac{1}{2018.2019}\)

  \(\Rightarrow A< 1+1-\frac{1}{2019}=2-\frac{1}{2019}< 2\)2

Từ 1 và 2 => A không là số tự nhiên

24 tháng 4 2018

Ta có:

1/2 + 1/3 + 1/4 + ... + 1/15 + 1/16 = (1/2 + 1/3 + 1/4 + 1/5) + (1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11) + (1/12 + 1/13 + 1/14) + (1/15 + 1/16)

Vì 1/6 + 1/7 + 1/8 < 3x 1/6 = 1/2

   1/9 + 1/10 + 1/11 <3x1/9 = 1/3

   1/12 + 1/13 +1/14 < 3x1/12 = 1/4

   1/15 + 1/16 < 3 x 1/15 = 1/5

Nên A < 2 x (1/2 + 1/3 + 1/4 + 1/5) < 2 x (1/2 + 1/2 + 1/4 + 1/4) =3 (1)

Lập luận tương tự có:

A = ( 1/2 + 1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11 + 1/12) + (1/13 + 1/14 + 1/15 + 1/16) > (1/2 + 1/3 + 1/4) + 4 x 1/8 + 4 x 1/ 12 + 4 x 1/16

Hay A > 2 x (1/2 + 1/3 + 1/4) > 2 x (1/2 + 1/4 + 1/4) = 2 (2)

Từ (1) và (2) ta có 2 < A < 3. Vậy A không phải là số tự nhiên.

1 tháng 5 2019

A = 1/2 - 1/2^2 + 1/2^3 - 1/2^4 + ... + 1/2^2017

2A = 1 - 1/2 + 1/2^2 - 1/2^3 + .... + 1/2^2016

2A + A = 1 + 1/2^2017

=> A = (1 + 1/2^2017) : 3 

18 tháng 4 2017

1/22+1/32+1/42+...+1/1002>0  và 1/22+1/32+....+1/1002<1/1.2+1/2.3+....+1/99.100=1/1-1/2+1/2-1/3+...+1/99-1/100=1-1/100<1

nên 0<1/22+1/32+...+1/100<1

vậy 1/22+1/32+...+1/1002 ko phải là số tự nhiên

18 tháng 4 2017

Ta có  \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+............+\frac{1}{100^2}>0\)       (1)

VÌ \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)

     \(\frac{1}{3^2}< \frac{1}{2\cdot3}\)

      \(\frac{1}{4^2}< \frac{1}{3\cdot4}\)

         \(.\)         \(.\)

         \(.\)         \(.\)

         \(.\)         \(.\)

      \(\frac{1}{100^2}< \frac{1}{99\cdot100}\)

Cộng vế với vế ta có \(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+........+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+..........+\frac{1}{99\cdot100}\)

\(\Rightarrow M< 1-\frac{1}{100}< 1\)(2)

         Kết hợp (1) với (2) ta có :  \(0< M< 1\)

          \(\Rightarrow\)Không tồn tại \(M\)là số tự nhiên thỏa mãn điều kiện trên

    k cho mình nha !

9 tháng 3 2017

Để quy đồng các mẫu của các phân số trong tổng A = \(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\), ta chọn mẫu chung là tích của 26 với các thừa số lẻ nhỏ hơn 100 . Gọi k1 , k2 , ... k100 là các thừa số phụ tương ứng  , tổng A có dạng : B = \(\frac{\left(k1+k2+k3+...+k100\right)}{2^6.3.5.7....99}\)

Trong 100 phân số của tổng A chỉ có duy nhất phân số \(\frac{1}{64}\)có mẫu chứa 26 nên trong các thừa số phụ k1 , k2 , ... , k100 chỉ có k64 ( thừa số phụ của \(\frac{1}{64}\)) là số lẻ ( bằng 3.5.7...99 ) , còn các thừa số phụ khác đều chẵn ( vì chứa ít nhất một thừa số 2 ) do đó B ( tức là A ) không thể là số tự nhiên