Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.......+\dfrac{1}{10^2}\)
\(D< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.......+\dfrac{1}{9.10}\)
\(D< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{9}-\dfrac{1}{10}\)
\(D< 1-\dfrac{1}{10}\Leftrightarrow D< 1\left(đpcm\right)\)
Gọi biểu thức trên là A.
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2013^2}.\)
Ta thấy:
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}.\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}.\)
..................
\(\dfrac{1}{2013^2}=\dfrac{1}{2012.2013}.\)
\(\Rightarrow A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2013^2}\)
\(< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2012.2013}.\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2012}-\dfrac{1}{2013}.\)
\(=1-\dfrac{1}{2013}.\)
\(< 1\left(đpcm\right).\)
Vậy \(A< 1.\)
Ta có :
\(\frac{1}{2^2}< \frac{1}{1.2}\); \(\frac{1}{3^2}< \frac{1}{2.3}\); ... ; \(\frac{1}{2013^2}< \frac{1}{2012.2013}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2013^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2012.2013}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2012}-\frac{1}{2013}\)
\(=1-\frac{1}{2013}< 1\)( đpcm )
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
........................
\(\frac{1}{2013^2}< \frac{1}{2012.2013}\)
\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+........+\frac{1}{2013^2}< \frac{1}{1.2}+\frac{1}{2.3}+.........+\frac{1}{2012.2013}\)
\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{2013^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+........+\frac{1}{2013}-\frac{1}{2013}\)
\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+......+\frac{1}{2013^2}< 1-\frac{1}{2013}\)
\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+........+\frac{1}{2013^2}< 1\left(đpcm\right)\)
\(\left(\frac{1}{2^2}-1\right)\cdot\left(\frac{1}{3^2}-1\right)\cdot..\cdot\left(\frac{1}{10^2}-1\right)\)
\(=\left(\frac{1}{2}\cdot\frac{1}{2}-1\right)\cdot\left(\frac{1}{3}\cdot\frac{1}{3}-1\right)\cdot...\cdot\left(\frac{1}{10}\cdot\frac{1}{10}-1\right)\)
\(=\left(\frac{1}{4}-1\right)\cdot\left(\frac{1}{9}-1\right)\cdot...\cdot\left(\frac{1}{100}-1\right)\)
\(=\frac{-3}{4}\cdot\frac{-8}{9}\cdot...\cdot\frac{-99}{100}\)
\(=\frac{\left(-1\right).\left(-3\right)}{2.2}\cdot\frac{\left(-2\right).\left(-4\right)}{3.3}\cdot...\cdot\frac{\left(-9\right).\left(-11\right)}{10.10}\)
\(=\frac{\left(-1\right).\left(-2\right)....\left(-9\right)}{2.3....10}\cdot\frac{\left(-3\right).\left(-4\right)....\left(-11\right)}{2.3.....10}\)
\(=\frac{-1}{10}\cdot\frac{-11}{2}=\frac{-11}{20}\)
2. TA CÓ: D=\(\frac{2011+2012}{2012+2013}\)
=\(\frac{2011}{2012+2013}+\frac{2012}{2012+2013}\)
VÌ 2012+2013>2012
MÀ \(\frac{2011}{2012+2013}<\frac{2011}{2012}\)(1)
VÌ 2012+2013>2013
MÀ \(\frac{2012}{2012+2013}<\frac{2012}{2013}\)(2)
TỪ (1) VÀ (2) \(\Rightarrow\frac{2011+2012}{2012+2013}<\frac{2011}{2012}+\frac{2012}{2013}\)
VẬY C > D
đặt tổng trên là A
ta co:
1/10^2<1/9.10
1/11^2<1/10.11
........
1/2014^2
=>A<1/9.10+1/10.11+.......+1/2013.2014=1/9-1/2014<1/9<9(đpcm)