Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10n +18n -1 = 9999...9 (n chũ số 9) +1-1+27n-9n
=(9999...9-9n) +27n
= 9.(1111...111-n) +27n
Mà ta có 111...111-n với 111...111 có n chữ số 1 luôn chia hết cho 9
=> 9(111...1-n) chia hết cho 9.9=81 mà 81 chia hết cho 27 -> 9(111...111-n) +27n chia hết choa 27
Giả sử: 10n + 18n - 1 chia hết cho 27
=> 10n - 1 + 18n chia hết cho 27
=> 999..9 (n chữ số 9) + 18n chia hết cho 27
=> 9(1111...1+2n) chia hết cho 27
=> 111..1 + 2n chia hết cho 3
Ta có: Tổng các chữ số của 1111..11 (n số 1) bằng n và 2n có tổng các chữ số là số dư khi 2n chia 9
Gọi số dư đó là k thì 2n = 3x + 2k (x thuộc N)
111....1 = 3y + k (x thuộc n)
=> 2n + 1111...11 = 3(x+y) + 3k = 3(x+y+k)
=> 2n + 111...111 chia hết cho 3
=> 10n + 18n - 9 chia hết cho 27
Giả sử: 10 n + 18n - 1 chia hết cho 27
=> 10n - 1 + 18n chia hết cho 27
=> 999..9 (n chữ số 9) + 18n chia hết cho 27
=> 9(1111...1+2n) chia hết cho 27
=> 111..1 + 2n chia hết cho 3
Ta có: Tổng các chữ số của 1111..11 (n số 1) bằng n và 2n có tổng các chữ số là số dư khi 2n chia 9
Gọi số dư đó là k thì 2n = 3x + 2k (x thuộc N)
111....1 = 3y + k (x thuộc n)
=> 2n + 1111...11 = 3(x+y) + 3k = 3(x+y+k)
=> 2n + 111...111 chia hết cho 3
=> 10n + 18n - 9 chia hết cho 27
10^n +18n -1
= 10^n -1 -9n +27
= 99....9 ( n chữ số 9 ) - 9n + 27
= 9 .( 11.....1 - n ) +27n ((n c/s 1)) chia hết cho 27
27 =3.9 => chứng minh 10n+18n1 chia hết cho 3 và 9
vì 9 chia hết cho 3 nên chỉ cần CM chia hết cho 9
có 10n+18n-1 =1000..000 -1 +18n ( có n số 0 )
= 99999...9999+18n ( có n-1 số 9)
999..9999 chia hết cho 9 và 18n có 18 chia hết cho 9 => 10n+18n-1 chia hết cho 9 => chia hết cho 3 => chia hết cho 27
có n số 0 và số 1 -9 =n số 9
mà chia hết cho 9 chưa chắc chia hết cho 27 như 36 chẳng hạn
để n^2 +2002 là số chính phương
=> n^2 +2002 =a^2 ( với a là số tự nhiên #0)
=> a^2 -n^2 =2002
=> (a-n)(a+n) =2002
do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2
mà a-n -(a+n) =-2n chia hết cho 2
=> a-n và a+n cung tính chẵn lẻ => a-n ,a+n đều chia hết cho 2
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4
=> vô lý
n2 chỉ có thể có các chữ số tận cùng là 0,1,4,5,6,9
Nên n2 + 2002 có các chữ số tận cùng lần lượt là 2;3;8;7;8;3
Mà số có tận cùng là các chữ số 2,3,7,8 ko là số chính phương.
Do đó: n2 + 2002 không là số chính phương với mọi n là STN.
Ta có:
10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) = 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3.
Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3
=> 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3
=> 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)
vì 3n + 1 =10k => 3n = 10k -1
=> 3n+4 +1 = 34 . 3n +1 = 81.(10k -1) +1 = 810k - 81 +1 = 810k - 80 =10(81k -8) chia hết cho 10
=> 3n+4 +1 là Bội của 10
Giả sử A=4n3 - 6n2 + 3n + 37 chia hết cho 125 với mọi n là số tự nhiên .
-> 4n3 - 6n2 + 3n + 37 chia hết cho 5
-> 2(4n3 - 6n2 + 3n + 37) chia hết cho 5
-> (2n-1)3 +75 chia hết cho 5
-> (2n-1)3 chia hết cho 5 -> 2n-1 chia hết cho 5 -> (2n-1)3 chia hết cho 125 nhưng 75 không chia hết cho 125 -> 2A không chia hết cho 125 -> A không chia hết cho 125 (trái giả thiết)
-> đpcm
a ) 10n + 72n - 1 chia hết cho 81
+ ) n = 0 => 100 + 72 . 0 - 1 = 0
+ ) Giả sử đúng đến n = k tức là :
( 10k + 72k - 1 ) chia hết cho 81 ta phải chứng minh đúng đến n = k+ 1
Tức là : 10k + 1 + 72 x k + 71
=> 10 . 10k + 72k + 71
=> 10 . \(\frac{10k+72k-1}{chiahetcho81}\)- \(\frac{648k+27}{chiahetcho81}\)
=> đpcm
Câu b và c làm tương tự
Đặt B= 10n+72n-1
B = 10ⁿ + 72n - 1
= 10ⁿ - 1 + 72n
Ta có: 10ⁿ - 1 = 99...9 (có n-1 chữ số 9)
= 9x(11..1) (có n chữ số 1)
A = 10ⁿ - 1 + 72n = 9x(11...1) + 72n
=> A : 9 = 11..1 + 8n
thấy 11...1 có n chữ số 1 có tổng các chữ số là n => 11..1 - n chia hết cho 9
=> A : 9 = 11..1 - n + 9n chia hết cho 9
= 11...1 -n + 9n
=> A : 9 = chia hết cho 9
=> A chia hết cho 81
Với n = 0 thì \(10^0+18.0+26=27⋮27\) (đúng)
Giả sử đúng với n = k.Tức là \(10^k+18k+26⋮27\)
Ta sẽ c/m nó đúng với n = k + 1.Ta có:
\(10^{k+1}+18\left(k+1\right)+26\)
\(=10^k.10+18k+44\)
\(=10\left(10^k+18k+26\right)-\left(162k+216\right)\)
\(=10\left(10^k+18k+26\right)-27\left(6k+8\right)\)
Do \(10^k+18k+26⋮27\Rightarrow10\left(10^k+18+26\right)⋮27;27\left(6k+8\right)⋮27\)
Suy ra \(10\left(10^k+18k+26\right)-27\left(6k+8\right)⋮27\)
Vậy theo nguyên lí quy nạp,ta có đpcm.