K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2017

Đề phải là với \(n\in N\)* chu:

\(\dfrac{n^7+n^2+1}{n^8+n+1}=\dfrac{\left(n^7-n\right)+\left(n^2+n+1\right)}{\left(n^8-n^2\right)+\left(n^2+n+1\right)}\)

\(=\dfrac{n\left(n^6-1\right)+\left(n^2+n+1\right)}{n^2\left(n^6-1\right)+\left(n^2+n+1\right)}=\dfrac{n\left(n^3-1\right)\left(n^3+1\right)+\left(n^2+n+1\right)}{n^2\left(n^3-1\right)\left(n^3+1\right)+\left(n^2+n+1\right)}\)\(=\dfrac{n\left(n-1\right)\left(n^2+n+1\right)\left(n^3+1\right)+\left(n^2+n+1\right)}{n^2\left(n-1\right)\left(n^2+n+1\right)\left(n^3+1\right)+\left(n^2+n+1\right)}\)

\(=\dfrac{\left(n^2+n+1\right)[\left(n^2-n\right)\left(n^3+1\right)+1]}{\left(n^2+n+1\right)[\left(n^3-n^2\right)\left(n^3+1\right)+1]}\)

\(=\dfrac{\left(n^2+n+1\right)\left(n^5-n^4+n^2-n+1\right)}{\left(n^2+n+1\right)\left(n^6-n^5+n^3-n^2\right)}\)

Do cả tử và mẫu đều có chung thừa số \(n^2+n+1>1\Rightarrow dpcm\)

12 tháng 11 2017

phân tích đa thức thành nhân t của mẫu va tử,rồi có nhân tử chung của mẫu và tử số là x2+x+1

9 tháng 12 2017

n8 + n + 1 = n8 - n2 + n2 + n + 1

= n2 (n6 - 1 ) + n2 + n + 1

= n2 (n2 - 1)(n4 +n2 + 1) + n2 + n + 1

= n2 (n2 - 1)(n4 + 2n2 + 1 - n2) + n2 + n + 1

= n2 (n2 - 1)(n2 + n + 1)(n2 - n + 1) + n2 + n + 1 chia hết cho n2 + n +1

Mặt khác :
n7 + n2 + 1 = n7 - n + n2 + n + 1

= (n - 1)(n6 - 1) +n2 + n + 1

= (n - 1)(n2 - 1)(n2 + n + 1)(n2 - n + 1) + n2 + n + 1 chia hết cho n2 + n + 1

Vậy chúng đều có ước chung là n2 + n + 1 nên phân số đó ko tối giản

AH
Akai Haruma
Giáo viên
26 tháng 11 2019

Lời giải:

Ta có:
\(n^7+n^2+1=n^7-n+n+n^2+1=n(n^6-1)+n^2+n+1\)

\(=n(n^3-1)(n^3+1)+n^2+n+1\)

\(=n(n-1)(n^2+n+1)(n^3+1)+(n^2+n+1)\)

\(=(n^2+n+1)[n(n-1)(n^3+1)+1]\)

\(=(n^2+n+1)(n^5-n^4+n^2-n+1)\)

Và:

\(n^8+n+1=n^8-n^2+n^2+n+1\)

\(=n^2(n^6-1)+(n^2+n+1)\)

\(=n^2(n^3-1)(n^3+1)+(n^2+n+1)=n^2(n-1)(n^2+n+1)(n^3+1)+(n^2+n+1)\)

\(=(n^2+n+1)(n^6-n^5+n^3-n^2+1)\)

Như vậy giữa $n^7+n^2+1$ và $n^8+n+1$ đều có ước chung là $n^2+n+1\neq \pm 1$ với mọi $n\neq 0;-1$ và nguyên nên phân số đã cho không tối giản.

AH
Akai Haruma
Giáo viên
8 tháng 11 2019

Lời giải:

Ta có:
\(n^7+n^2+1=n^7-n+n+n^2+1=n(n^6-1)+n^2+n+1\)

\(=n(n^3-1)(n^3+1)+n^2+n+1\)

\(=n(n-1)(n^2+n+1)(n^3+1)+(n^2+n+1)\)

\(=(n^2+n+1)[n(n-1)(n^3+1)+1]\)

\(=(n^2+n+1)(n^5-n^4+n^2-n+1)\)

Và:

\(n^8+n+1=n^8-n^2+n^2+n+1\)

\(=n^2(n^6-1)+(n^2+n+1)\)

\(=n^2(n^3-1)(n^3+1)+(n^2+n+1)=n^2(n-1)(n^2+n+1)(n^3+1)+(n^2+n+1)\)

\(=(n^2+n+1)(n^6-n^5+n^3-n^2+1)\)

Như vậy giữa $n^7+n^2+1$ và $n^8+n+1$ đều có ước chung là $n^2+n+1\neq \pm 1$ với mọi $n\neq 0;-1$ và nguyên nên phân số đã cho không tối giản.

13 tháng 12 2022

Bài 1:

Gọi d=ƯCLN(15n^2+8n+6;30n^2+21n+13)

=>30n^2+21n+13-30n^2-16n-12 chia hết cho d

=>5n+1 chia hết cho d

=>5n chia hết cho d và 1 chia hết cho d

=>d=1

=>P là phân số tối giản

5 tháng 11 2023

bn sai phần 5n + 1 rùi vì giả dụ n = 7 và d = 3 thì 35 ko chia hết cho 3 mà phải +1 nữa thì = 36 mới chia hết cho 3

 

 

30 tháng 11 2017

Violympic toán 8

30 tháng 11 2017

https://hoc24.vn/hoi-dap/question/488321.html

26 tháng 11 2017

Em chưa học làm dạng này , em làm thử thôi nhá, sai xin chỉ dạy thêm nha

2 . \(\dfrac{n^7+n^2+1}{n^8+n+1}=\dfrac{n^7-n+n^2+n+1}{n^8-n^2+n^2+n+1}\)

\(=\dfrac{n\left(n^6-1\right)+n^2+n+1}{n^2\left(n^6-1\right)+n^2+n+1}=\dfrac{n\left(n^3+1\right)\left(n^3-1\right)+n^2+n+1}{n^2\left(n^3+1\right)\left(n^3-1\right)+n^2+n+1}\)\(=\dfrac{n\left(n^3+1\right)\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1}{n^2\left(n^3+1\right)\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1}\)

\(=\dfrac{\left(n^2+n+1\right)\left[\left(n^4+n\right)\left(n-1\right)\right]}{\left(n^2+n+1\right)\left[\left(n^5+n^2\right)\left(n-1\right)+1\right]}\)

\(=\dfrac{n^5-n^4+n^2-n}{n^6-n^5+n^3-n^2+1}=\dfrac{n^4\left(n-1\right)+n\left(n-1\right)}{n^5\left(n-1\right)+n^2\left(n-1\right)+1}\)

\(=\dfrac{\left(n-1\right)\left(n^4+n\right)}{\left(n-1\right)\left(n^5+n^2\right)+1}\)

Vậy ,với mọi số nguyên dương n thì phân thức trên sẽ không tối giản

18 tháng 3 2018

a, vì m>n

=> m+7>n+7

b, vì m>n

=> -2m<-2n

=>-2m-8<-2n-8

c, vì m>n

=>m+1>n+1

mà m+3>m+1

=>m+3>n+1

phần d,e,f máy mình cùi nên không hiện ra phép tính. sr nhiều

18 tháng 3 2018

m>n

a) m+7 và m+7

ta có : m>n

=> m+7 > n+7

b) -2m+8 và -2n+8

ta có : m>n

=> -2m > -2n

=> -2m+8 > -2n+8

c) m+3 và m+1

ta có : 3 >1

=> m+3 > m+1

d) \(\dfrac{1}{2}\) \(\left(m-\dfrac{1}{4}\right)\)\(\dfrac{1}{2}\)\(\left(n-\dfrac{1}{4}\right)\)

ta có: m > n

=> \(m-\dfrac{1}{4}\) > \(n-\dfrac{1}{4}\)

=>\(\dfrac{1}{2}\left(m-\dfrac{1}{4}\right)\)>\(\dfrac{1}{2}\left(n-\dfrac{1}{4}\right)\)

e) \(\dfrac{4}{5}-6\)m và \(\dfrac{4}{5}-6n\)

ta có : m > n

=> -6m > -6n

=> \(\dfrac{4}{5}-6m>\dfrac{4}{5}-6n\)

f) \(-3\left(m+4\right)+\dfrac{1}{2}\)\(-3\left(n+4\right)+\dfrac{1}{2}\)

ta có : m > n

=> m=4 > n+4

=> -3(m+4) > -3(m+4)

=>\(-3\left(m+4\right)+\dfrac{1}{2}>-3\left(n+4\right)+\dfrac{1}{2}\)

18 tháng 2 2016

bai nay thi hoi kho tui chua lam duoc