\(\dfrac{n^7+n^2+n}{n^8+n+1}\) chưa tối giản

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2017

n8 + n + 1 = n8 - n2 + n2 + n + 1

= n2 (n6 - 1 ) + n2 + n + 1

= n2 (n2 - 1)(n4 +n2 + 1) + n2 + n + 1

= n2 (n2 - 1)(n4 + 2n2 + 1 - n2) + n2 + n + 1

= n2 (n2 - 1)(n2 + n + 1)(n2 - n + 1) + n2 + n + 1 chia hết cho n2 + n +1

Mặt khác :
n7 + n2 + 1 = n7 - n + n2 + n + 1

= (n - 1)(n6 - 1) +n2 + n + 1

= (n - 1)(n2 - 1)(n2 + n + 1)(n2 - n + 1) + n2 + n + 1 chia hết cho n2 + n + 1

Vậy chúng đều có ước chung là n2 + n + 1 nên phân số đó ko tối giản

13 tháng 12 2022

Bài 1:

Gọi d=ƯCLN(15n^2+8n+6;30n^2+21n+13)

=>30n^2+21n+13-30n^2-16n-12 chia hết cho d

=>5n+1 chia hết cho d

=>5n chia hết cho d và 1 chia hết cho d

=>d=1

=>P là phân số tối giản

5 tháng 11 2023

bn sai phần 5n + 1 rùi vì giả dụ n = 7 và d = 3 thì 35 ko chia hết cho 3 mà phải +1 nữa thì = 36 mới chia hết cho 3

 

 

26 tháng 11 2017

Em chưa học làm dạng này , em làm thử thôi nhá, sai xin chỉ dạy thêm nha

2 . \(\dfrac{n^7+n^2+1}{n^8+n+1}=\dfrac{n^7-n+n^2+n+1}{n^8-n^2+n^2+n+1}\)

\(=\dfrac{n\left(n^6-1\right)+n^2+n+1}{n^2\left(n^6-1\right)+n^2+n+1}=\dfrac{n\left(n^3+1\right)\left(n^3-1\right)+n^2+n+1}{n^2\left(n^3+1\right)\left(n^3-1\right)+n^2+n+1}\)\(=\dfrac{n\left(n^3+1\right)\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1}{n^2\left(n^3+1\right)\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1}\)

\(=\dfrac{\left(n^2+n+1\right)\left[\left(n^4+n\right)\left(n-1\right)\right]}{\left(n^2+n+1\right)\left[\left(n^5+n^2\right)\left(n-1\right)+1\right]}\)

\(=\dfrac{n^5-n^4+n^2-n}{n^6-n^5+n^3-n^2+1}=\dfrac{n^4\left(n-1\right)+n\left(n-1\right)}{n^5\left(n-1\right)+n^2\left(n-1\right)+1}\)

\(=\dfrac{\left(n-1\right)\left(n^4+n\right)}{\left(n-1\right)\left(n^5+n^2\right)+1}\)

Vậy ,với mọi số nguyên dương n thì phân thức trên sẽ không tối giản

AH
Akai Haruma
Giáo viên
26 tháng 11 2019

Lời giải:

Ta có:
\(n^7+n^2+1=n^7-n+n+n^2+1=n(n^6-1)+n^2+n+1\)

\(=n(n^3-1)(n^3+1)+n^2+n+1\)

\(=n(n-1)(n^2+n+1)(n^3+1)+(n^2+n+1)\)

\(=(n^2+n+1)[n(n-1)(n^3+1)+1]\)

\(=(n^2+n+1)(n^5-n^4+n^2-n+1)\)

Và:

\(n^8+n+1=n^8-n^2+n^2+n+1\)

\(=n^2(n^6-1)+(n^2+n+1)\)

\(=n^2(n^3-1)(n^3+1)+(n^2+n+1)=n^2(n-1)(n^2+n+1)(n^3+1)+(n^2+n+1)\)

\(=(n^2+n+1)(n^6-n^5+n^3-n^2+1)\)

Như vậy giữa $n^7+n^2+1$ và $n^8+n+1$ đều có ước chung là $n^2+n+1\neq \pm 1$ với mọi $n\neq 0;-1$ và nguyên nên phân số đã cho không tối giản.

AH
Akai Haruma
Giáo viên
8 tháng 11 2019

Lời giải:

Ta có:
\(n^7+n^2+1=n^7-n+n+n^2+1=n(n^6-1)+n^2+n+1\)

\(=n(n^3-1)(n^3+1)+n^2+n+1\)

\(=n(n-1)(n^2+n+1)(n^3+1)+(n^2+n+1)\)

\(=(n^2+n+1)[n(n-1)(n^3+1)+1]\)

\(=(n^2+n+1)(n^5-n^4+n^2-n+1)\)

Và:

\(n^8+n+1=n^8-n^2+n^2+n+1\)

\(=n^2(n^6-1)+(n^2+n+1)\)

\(=n^2(n^3-1)(n^3+1)+(n^2+n+1)=n^2(n-1)(n^2+n+1)(n^3+1)+(n^2+n+1)\)

\(=(n^2+n+1)(n^6-n^5+n^3-n^2+1)\)

Như vậy giữa $n^7+n^2+1$ và $n^8+n+1$ đều có ước chung là $n^2+n+1\neq \pm 1$ với mọi $n\neq 0;-1$ và nguyên nên phân số đã cho không tối giản.

29 tháng 8 2017

Ta có :

\(\frac{n^7+n^2+1}{n^8+n+1}=\frac{n^7-n^4+n^4-n+n^2+n+1}{n^8-n^5+n^5-n^2+n^2+n+1}\)

\(=\frac{n^4\left(n^3-1\right)+n\left(n^3-1\right)+\left(n^2+n+1\right)}{n^5\left(n^3-1\right)+n^2\left(n^3-1\right)+\left(n^2+n+1\right)}\)

\(=\frac{n^4\left(n-1\right)\left(n^2+n+1\right)+n\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)}{n^5\left(n-1\right)\left(n^2+n+1\right)+n^2\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)}\)

\(=\frac{\left(n^2+n+1\right)\left(n^5-n^4+n^2-n+1\right)}{\left(n^2+n+1\right)\left(n^6-n^5+n^3-n+1\right)}\)

\(=\frac{n^5-n^4+n^2-n+1}{n^6-n^5+n^3-n+1}\)

Do phân số \(\frac{n^7+n^2+1}{n^8+n+1}\) còn thu gọi được thành \(\frac{n^5-n^4+n^2-n+1}{n^6-n^5+n^3-n+1}\) nên nó chưa tối giản (đpcm)

11 tháng 8 2015

\(\frac{n^7+n^2+1}{n^8+n+1}=\frac{\left(n^2+n+1\right)\left(n^5-n^4+n^2-n+1\right)}{\left(n^2+n+1\right)\left(n^6-n^5+n^3-n^2+1\right)}=\frac{n^5-n^4+n^2-n+1}{n^6-n^5+n^3-n^2+1}\)

=>phân số ban đầu chưa tối giản với mọi n

17 tháng 5 2017

Ghi sai đề kìa

30 tháng 11 2017

Violympic toán 8

30 tháng 11 2017

https://hoc24.vn/hoi-dap/question/488321.html

AH
Akai Haruma
Giáo viên
12 tháng 11 2017

Lời giải:

\(\frac{n-1}{n^3-n+1}\) luôn tối giản với mọi n nguyên dương em nhé

Gọi $d$ là ước chung lớn nhất của \(n-1,n^3-n+1\)

Khi đó:

\(\left\{\begin{matrix} n-1\vdots d\\ n^3-n+1\vdots d\end{matrix}\right.\)

Có: \(n^3-n+1=n(n^2-1)+1=n(n-1)(n+1)+1\vdots d\) mà \(n-1\vdots d\) nên \(1\vdots d\Rightarrow d=1\)

Do đó, ước chung lớn nhất của $n-1,n^3-n+1$ là $1$. Điều đó có nghĩa là \(\frac{n-1}{n^3-n+1}\) luôn tối giản với mọi n nguyên dương.