![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Trước tiên ta chứng minh:
\(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng)
Áp dụng vào bài toán ta được
\(\frac{1}{1+x^3+y^3}+\frac{1}{1+y^3+z^3}+\frac{1}{1+z^3+x^3}\le\frac{1}{1+xy\left(x+y\right)}+\frac{1}{1+yz\left(y+z\right)}+\frac{1}{1+zx\left(z+x\right)}\)
\(=\frac{xyz}{xyz+xy\left(x+y\right)}+\frac{xyz}{xyz+yz\left(y+z\right)}+\frac{xyz}{xyz+zx\left(z+x\right)}=\frac{z}{z+x+y}+\frac{x}{x+y+z}+\frac{y}{y+z+x}=1\)
Áp dụng BĐT Cauchy - shwart dạng Engel ta có:
VT= (1+1+1)^2 / [2(x^3 + y^3 + z^3) +3]
=9/[2(x^3 + y^3 + z^3) +3]
mà x^3 + y^3 + z^3 >= 3abc = 3 (BĐT AM-GM)
=> VT>=9/9=1 (dpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(N=\frac{1}{2^3}+\frac{1}{3^3}+....+\frac{1}{n^3}<\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{\left(n-1\right)n\left(n+1\right)}\)
\(=\frac{1}{2}\times\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+....+\frac{2}{\left(n-1\right)n\left(n+1\right)}\right)\)
\(=\frac{1}{2}\times\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-....-\frac{1}{n\left(n+1\right)}\right)\)
\(=\frac{1}{2}\times\left(\frac{1}{2}-\frac{1}{n\left(n+1\right)}\right)=\frac{1}{4}-\frac{1}{2n\left(n+1\right)}\)
=> ĐPCM
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\left(a-1\right)^3=a^3-3a^2+3a-1\)
\(=a\left(a^2-3a+3\right)-1=a\left(a-\frac{3}{2}\right)^2+\frac{3}{4}a-1\ge\frac{3}{4}a-1\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\left(b-1\right)^3\ge\frac{3}{4}b-1;\left(c-1\right)^3\ge\frac{3}{4}c-1\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\frac{3}{4}\left(a+b+c\right)-3=\frac{3}{4}\cdot3-3=-\frac{3}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Quy đồng BĐT ban đầu ta được BĐT cần chứng minh là
\(a^2+b^2+c^2+3\ge3a^2b^2c^2+a^2b^2+b^2c^2+c^2a^2\)
\(\Leftrightarrow\left(a+b+c\right)^2+2abc\left(a+b+c\right)-3a^2b^2c^2\ge12\)
Đây là hàm bậc 2 theo \(abc\) có hệ số \(A< 0\), mà \(abc\in\left[0;\frac{a+b+c}{3}\right]\) nên GTNN đạt được khi \(abc=0\) hoặc \(abc=\frac{a+b+c}{3}\)
*)Xét \(abc=0\). Giả sử \(c=0\) thì \(ab=3\) và \(VT=\left(a+b\right)^2\ge4ab=12\)
*)Xét \(abc=\frac{a+b+c}{3}\) thì:
\(VT=\frac{4}{3}\left(a+b+c\right)^2\ge4\left(ab+bc+ca\right)=12\)
Đẳng thức xảy ra khi \(a=b=c=1\) hoặc \(a=b=\sqrt{3};c=0\) và các hoán vị
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\ge6abc\)
\(\Leftrightarrow a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2\ge6abc\)
\(\Leftrightarrow\left(a^2-2abc+b^2c^2\right)+\left(b^2-2abc+a^2c^2\right)+\left(c^2-2abc+a^2b^2\right)\ge0\)
\(\Leftrightarrow\left(a-bc\right)^2+\left(b-ac\right)^2+\left(c-ab\right)^2\ge0\) (luôn đúng)
Vậy bđt được chứng minh.
Dễ thấy \(2-2=3-3\) vì chúng cùng bằng 0.
Nên \(2\left(1-1\right)=3\left(1-1\right)\Leftrightarrow2=3\)
Mà 1 + 1 = 2 nên 1 + 1 = 3 (đpcm)
Vì bạn bắt chứng minh một điều vô lí nên tớ dùng điều vô lí để chứng minh nó thôi... và một bản report.
??? ảo