\(y^4\)là số chính phương

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2019

ta có: (x+y).(x+2y).(x+3y).(x+4y) + y4 

= (x2 +5xy +  4y2 ).(x2 + 5xy + 6y2 ) + y4 

= (x2 + 5xy + 5y2 - y2 ).(x2 + 5xy + 5y2 + y2 ) + y4

= (x2 + 5xy + 5y2 )2 - y4 + y4 = (x2 + 5xy + 5y2)2

=> đpcm

23 tháng 3 2016

chứng minh hả !

lớp mấy đây ?

23 tháng 3 2016

mk hỏi hơi ngu !

27 tháng 3 2017

Ta có:

\(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)

\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)

Đặt \(x^2+5xy+5y^2=t\left(t\in Z\right)\) thì:

\(A=\left(t-y^2\right)\left(t+y^2\right)+y^4\)

\(=t^2-y^4+y^4=t^2\)

\(=\left(x^2+5xy+5y^2\right)^2\)

Vì \(x,y,z\in Z\) nên:

\(x^2\in Z,5xy\in Z,5y^2\in Z\)

\(\Leftrightarrow x^2+5xy+5y^2\in Z\)

Vậy \(A\) là số chính phương (Đpcm)

22 tháng 1 2017

ta có (x+y)(x+2y)(x+3y)(x+4y)+y^4

=(x+y)(x+4y)(x+2y)(x+3y)+y^4

=(x^2+5xy+4y^2)(x^2+5xy+6y^2)+y^4

đặt x^2+5xy=a

<=>A=a(a+2y^2)+y^4

=a^2+2.a.y^2+y^4

=(a+y^2)^2

là scp

14 tháng 3 2018

Có : 

A = [(x+y).(x+4y)] . [(x+2y).(x+3y)] + y^4

   = (x^2+5xy+4y^2) . (x^2+5xy+6y^2) + y^4

   = (x^2+5xy+5y^2)^2 - y^4 + y^4

   = (x^2+5xy+5y^2)^2 là số chính phương 

Tk mk nha

14 tháng 3 2018

cảm ơn nha

9 tháng 8 2019

a. \(A=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)

Đặt \(t=x^2+5xy+5y^2\left(t\inℤ\right)\)

\(\Rightarrow A=\left(t-y^2\right)\left(t+y^2\right)+y^4=t^2=\left(x^2+5xy+5y^2\right)^2\)

Vậy giá trị của A là một số chính phương

AH
Akai Haruma
Giáo viên
23 tháng 2 2017

Giải:

Ta có \(N=(x+y)(x+2y)(x+3y)(x+4y)+y^4\)

\(\Leftrightarrow N=(x^2+5xy+4y^2)(x^2+5xy+6y^2)+y^4\)

Đặt \(x^2+5xy+4y^2=a\)

\(\Rightarrow N=a(a+2y^2)+y^4=(a+y^2)^2\) là một số chính phương

Do đó ta có đpcm.