K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2016

Vậy chắc đề là với \(x\in Z\)nhỉ?

Ta có :

\(\left(x-1\right)^3+x^3+\left(x+1\right)^3\)

\(=\left(x^3-3x^2+3x-1\right)+\left(x^3+3x^2+3x+1\right)+x^3\)

\(=3x^3+6x\)

\(=3x\left(x^2+2\right)\)

Ta cần chứng minh \(x\left(x^2+2\right)\)là bội của 3.

Đặt 3 trường hợp :

TH1 : \(x=3k\)

Như vậy \(x\left(x^2+2\right)=3k\left(x^2+2\right)\)chia hết cho 3.

TH2 : \(x=3k+1\)

\(\Rightarrow x^2+2=\left(3k+1\right)^2+2\)

\(=9k^2+1+6k+2\)

\(=3\left(3k^2+2k+1\right)\)chia hết cho 3

Như vậy \(x\left(x^2+2\right)\)chia hết cho 3.

TH3 : \(x=3k+2\)

\(\Rightarrow x^2+2=\left(3k+2\right)^2+2\)

\(=9k^2+12k+4+2\)

\(=3\left(3k^2+4k+2\right)\)chia hết cho 3

Như vậy \(x\left(x^2+2\right)\)chia hết cho 3.

\(\Rightarrow\left(x-1\right)^3+x^3+\left(x+1\right)^3\)chia hết cho 9.

Vậy ...

10 tháng 9 2016

Với x=1/3 => sai , bạn còn thiếu đk r :))

13 tháng 8 2017

Giup mik vs!

27 tháng 5 2016

(x-1)2=(x-1)(x-1)

        =x2-x-x-1

        =x2-2x-1

x10-10+9=x2*x8-2x-8x-1+10             

Ta viết được:\(\frac{x^2.x^8-2x-8x-1+10}{x^2-2x-1}\) ta thấy mẫu và tử đều có x2-2x-1

=>mẫu chia hết tử

=>Đpcm

27 tháng 5 2016

(x-1)2=(x-1)(x-1)

        =x2-x-x-1

        =x2-2x-1

x10-10+9=x2*x8-2x-8x-1+10             

Ta viết được:$\frac{x^2.x^8-2x-8x-1+10}{x^2-2x-1}$x2.x82x8x1+10x22x1  ta thấy mẫu và tử đều có x2-2x-1

=>mẫu chia hết tử

=>Đpcm

15 tháng 10 2015

bài 1:vì x^3 + ax + b chia hết cho (x-1)^2 nên khi nhóm nhân tử chung lại thì x^3 + ax + b có dạng:
(x-1)^2(mx + n)
nhân phá ra bạn sẽ có(x^2 -2x + 1)(mx + n) = m.x^3 + n.x^2 - 2m.x^2 - 2n.x + m.x + n
= m.x^3 + x^2 (n -2m) + x(m -2n) + n
vì nó có dạng x^3 + ax + b nên ta sẽ có: m = 1
và n -2m = 0
hay n -2 = 0
hay n =2.
suy ra đa thức sẽ bằng:
x^3 -3x + 2
từ đó suy ra a = -3 và b = 2.
bài 2:bạn nhận thấy : n^3 + 3n^2 - n - 3 = n^2(n+3) - (n+3) = (n-1)(n+1)(n+3)
vì n lẻ => n -1 là số chẵn
n +1 là số chẵn
n + 3 là số chẵn
đặt n-1 = a ( a chẵn) suy ra ta có:
a(a +2)(a+4)
bạn thấy a(a +2)(a+4) là tích 3 số chẵn liên tiếp nên chia hết cho 48 (bạn có thể tự biện luận từ số 48 = 2.4.6 là tích 3 số chẵn liên tiếp nhỏ nhất không chứa 0 nên suy ra tích 3 số chẵn liên tiếp luôn chia hết cho 48)
suy ra a(a+2)(a+4) chia hết cho 48.
suy ra (n-1)(n+1)(n+3) chia hết cho 48
suy ra n^3 + 3n^2 - n - 3 luôn chia hết cho 48 với n lẻ (đpcm)

 

22 tháng 11 2015

cau  hoi tuong tu nhe