K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2017

Đề bài trá hình học sinh :)))))))))))))))0
\(\left(a+b+c\right)\left(a'+b'+c'\right)\ge\left(\sqrt{a.a'}+\sqrt{b.b'}+\sqrt{a.a'}\right)^2\\ .\)
=> \(\sqrt{\left(a+b+c\right)\left(a'+b'+c'\right)}\ge\left(\sqrt{a.a'}+\sqrt{b.b'}+\sqrt{c.c'}\right)\\ \)
Dấu chính là điều phải chứng minh :))))))))))))
Bài này áp dụng BĐT Bunhiaacopxki ....................................>< .......................... Chúc học tốt <3 

3 tháng 8 2017

* Bổ sung* 
Dấu = chính là ĐPCM.

6 tháng 9 2018

Sửa đề: \(\frac{b+c-a}{2}< m_a< \frac{b+c}{2}\)

Gọi M là trung điểm BC

Xét tg ABM, ta có: AM>AB-BM 

Xét tg ACM, ta có: AM>AC-MC 

=> 2AM>AB+AC-BC 

\(\Rightarrow m_a>\frac{c+b-a}{2}\)(1)  

Trên tia đối tia MA, lấy D sao cho MD=MA   

=> tg AMB= tg DMC => AB=CD 

Xét tg ACD có: AD<AC+CD=AC+AB 

=> 2AM<AC+AB 

\(\Rightarrow m_a< \frac{b+c}{2}\)(2) 

Từ (1)(2) => đpcm

3 tháng 8 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(a+b+c\right)\left(a'+b'+c'\right)\ge\left(\sqrt{a\cdot a'}+\sqrt{b\cdot b'}+\sqrt{c\cdot c'}\right)^2\)

\(\Leftrightarrow\sqrt{\left(a+b+c\right)\left(a'+b'+c'\right)}\ge\sqrt{a\cdot a'}+\sqrt{b\cdot b'}+\sqrt{c\cdot c'}\)

Hay \(VP\ge VT\)

Dấu "=" xảy ra khi \(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}\)

0
1 tháng 3 2017

\(P=cos^2a\left(1+cot^2a\right)=\dfrac{cos^2a}{sin^2a}=cot^2a\)

\(M=\dfrac{2cos^2a-\left(sin^2a+cos^2a\right)}{sina+cosa}=\dfrac{cos^2a-sin^2a}{sina+cosa}\)

\(=\dfrac{\left(cosa-sina\right)\left(cosa+sina\right)}{sina+cosa}=cosa-sina\)