Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề bài trá hình học sinh :)))))))))))))))0
\(\left(a+b+c\right)\left(a'+b'+c'\right)\ge\left(\sqrt{a.a'}+\sqrt{b.b'}+\sqrt{a.a'}\right)^2\\
.\)
=> \(\sqrt{\left(a+b+c\right)\left(a'+b'+c'\right)}\ge\left(\sqrt{a.a'}+\sqrt{b.b'}+\sqrt{c.c'}\right)\\
\)
Dấu chính là điều phải chứng minh :))))))))))))
Bài này áp dụng BĐT Bunhiaacopxki ....................................>< .......................... Chúc học tốt <3

Sửa đề: \(\frac{b+c-a}{2}< m_a< \frac{b+c}{2}\)
Gọi M là trung điểm BC
Xét tg ABM, ta có: AM>AB-BM
Xét tg ACM, ta có: AM>AC-MC
=> 2AM>AB+AC-BC
\(\Rightarrow m_a>\frac{c+b-a}{2}\)(1)
Trên tia đối tia MA, lấy D sao cho MD=MA
=> tg AMB= tg DMC => AB=CD
Xét tg ACD có: AD<AC+CD=AC+AB
=> 2AM<AC+AB
\(\Rightarrow m_a< \frac{b+c}{2}\)(2)
Từ (1)(2) => đpcm

Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(a+b+c\right)\left(a'+b'+c'\right)\ge\left(\sqrt{a\cdot a'}+\sqrt{b\cdot b'}+\sqrt{c\cdot c'}\right)^2\)
\(\Leftrightarrow\sqrt{\left(a+b+c\right)\left(a'+b'+c'\right)}\ge\sqrt{a\cdot a'}+\sqrt{b\cdot b'}+\sqrt{c\cdot c'}\)
Hay \(VP\ge VT\)
Dấu "=" xảy ra khi \(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}\)
Câu 1 : Cho (O ; R) và dây AB = R #Hỏi cộng đồng OLM #Toán lớp 9
