K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2019

Đặt : \(\frac{a}{b}=\frac{c}{d}=k\) => a = bk; c = dk

Khi đó, ta có:

\(\frac{4a+3b}{4a-3b}=\frac{4bk+3b}{4bk-3b}=\frac{b\left(4k+3\right)}{b\left(4k-3\right)}=\frac{4k+3}{4k-3}\) (1)

\(\frac{8c+6d}{8c-6d}=\frac{2\left(4c+3d\right)}{2\left(4c-3d\right)}=\frac{4c+3d}{4c-3d}=\frac{4dk+3d}{4dk-3d}=\frac{d\left(4k+3\right)}{d\left(4k-3\right)}=\frac{4k+3}{4k-3}\) (2)

Từ (1) và (2) => \(\frac{4a+3b}{4a-3b}=\frac{8c+6d}{8c-6d}\) <=> a/b = c/d

15 tháng 10 2018

Đặt : \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Khi đó : \(\frac{bk+dk}{bk}=\frac{b+d}{b}\)

\(\Rightarrow\frac{k\left(b+d\right)}{bk}=\frac{b+d}{b}\)

\(\Rightarrow\frac{b+d}{b}=\frac{b+d}{b}\left(đpcm\right)\)

Khi đó : \(\frac{4bk+3b}{4dk+3d}=\frac{4bk-3b}{4dk-3d}\)

\(\Rightarrow\frac{b\left(4k+3\right)}{d\left(4k+3\right)}=\frac{b\left(4k-3\right)}{d\left(4k-3\right)}\)

\(\Rightarrow\frac{b}{d}=\frac{b}{d}\left(đpcm\right)\)

15 tháng 10 2018

a) \(\frac{a}{b}\)=\(\frac{c}{d}\), áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{a}{b}\)=\(\frac{c}{d}\)=\(\frac{a+c}{b+d}\)

\(\frac{a+c}{b+d}\)=\(\frac{a}{b}\)

\(\Rightarrow\)\(\frac{a+c}{a}\)=\(\frac{b+d}{d}\)

b) \(\frac{a}{b}\)=\(\frac{c}{d}\)\(\Rightarrow\)\(\frac{a}{c}\)=\(\frac{b}{d}\)\(\Rightarrow\)\(\frac{4a}{4c}\)=\(\frac{3b}{3d}\)(1)

Từ (1), áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{4a}{4c}\)=\(\frac{3b}{3d}\)=\(\frac{4a+3b}{4c+3d}\)=\(\frac{4a-3b}{4c-3d}\)

6 tháng 7 2019

nhân chéo r rút gọn

6 tháng 7 2019

Ta có: \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\Leftrightarrow\frac{4a}{4c}=\frac{3b}{3d}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{4a}{4c}=\frac{3b}{3d}=\frac{4a-3b}{4c-3d}=\frac{4a+3b}{4c+3d}\)

Vậy \(\frac{4a-3b}{4c-3d}=\frac{4a+3b}{4c+3d}\left(ĐPCM\right)\)

10 tháng 9 2019

a, Ta có: \(\frac{a}{b}=\frac{c}{d}\)\(\Leftrightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)(1)

\(\Leftrightarrow\frac{a^2}{b^2}=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{c}{d}=\frac{ac}{bd}\)(2)

Từ (1) và (2) => \(\frac{a^2+c^2}{b^2+d^2}=\frac{ac}{bd}\)

b, Ta có: \(\frac{a}{b}=\frac{c}{d}\)\(\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)\(\Leftrightarrow\frac{4a}{4c}=\frac{3b}{3d}=\frac{4a+3b}{4c+3d}=\frac{4a-3b}{4c-3d}\)

\(\Leftrightarrow\frac{4a+3b}{4c+3d}=\frac{4a-3b}{4c-3d}\)

\(\Leftrightarrow\left(4a+3b\right)\left(4c-3d\right)=\left(4a-3b\right)\left(4c+3d\right)\)

23 tháng 7 2019

Câu a thiếu đề nhé, -3a+b= bao nhiêu thế bạn?

23 tháng 7 2019

b/ Theo đề ta có:

\(\frac{a}{7}=\frac{b}{4}\Rightarrow\frac{a}{14}=\frac{b}{8}\); \(\frac{b}{8}=\frac{c}{5}\)

=> \(\frac{a}{14}=\frac{b}{8}=\frac{c}{5}\)

a/d tính chất của dãy tỉ số = nhau ta có:

\(\frac{a}{14}=\frac{b}{8}=\frac{c}{5}=\frac{10a}{140}=\frac{5b}{40}=\frac{c}{5}=\frac{10a-5b+c}{140-40+5}=\frac{100}{105}=\frac{20}{21}\)

=> \(\left\{{}\begin{matrix}a=\frac{20}{21}\cdot14=\frac{40}{3}\\b=\frac{20}{21}\cdot8=\frac{160}{21}\\c=\frac{20}{21}\cdot5=\frac{100}{21}\end{matrix}\right.\)

vậy...

3 tháng 8 2016

Ta có a = bk

c = dk

=> \(\frac{4a+9b}{7a-6b}\)=\(\frac{4bk+9b}{7bk-6b}\)=\(\frac{b.\left(4k+9\right)}{b.\left(7k-6\right)}\)=\(\frac{4k+9}{7k-6}\)

\(\frac{4c+9d}{7c-6d}\)=\(\frac{4dk+9d}{7dk-6d}\)=\(\frac{d.\left(4k+9\right)}{d.\left(7k-6\right)}\)=\(\frac{4k+9}{7k-6}\)

=> \(\frac{4a+9b}{7a-6b}\)=\(\frac{4c+9d}{7c-6d}\)

17 tháng 10 2015

\(\frac{a}{b}\)\(\frac{c}{d}\)=> \(\frac{a}{c}\)\(\frac{b}{d}\)\(\frac{4a}{4c}\)\(\frac{6b}{6d}\)\(\frac{4a+6b}{4c+6d}\)

\(\frac{a}{c}\)\(\frac{b}{d}\)\(\frac{5a}{5c}\)\(\frac{7b}{7d}\)\(\frac{5a-7b}{5c-7d}\)

=> \(\frac{4a+6b}{4c+6d}\)\(\frac{5a-7b}{5c-7d}\)

=> \(\frac{4a+6b}{5a-7b}\)\(\frac{4c+6d}{5c-7d}\)

26 tháng 11 2017

5m dây đồng nặng 43g. hỏi 10km dây đồng như thế nặng bao nhiêu kg ?

giải giúp với

13 tháng 10 2020

Đặt \(\frac{a}{b}=\frac{c}{d}=k\) ( \(k\ne0\))

\(\Rightarrow a=b.k\)\(c=d.k\)

Ta có: \(\frac{4a-3b}{a}=\frac{4.bk-3b}{bk}=\frac{b.\left(4k-3\right)}{bk}=\frac{4k-3}{k}\)(1)

mà \(\frac{4c-3d}{c}=\frac{4.dk-3d}{dk}=\frac{d.\left(4k-3\right)}{dk}=\frac{4k-3}{k}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{4a-3b}{a}=\frac{4c-3d}{c}\)( đpcm )