Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)\(\Rightarrow\frac{bk}{bk+b}=\frac{dk}{dk+d}\)
Xét VT \(\frac{bk}{bk+b}=\frac{bk}{b\left(k+1\right)}=\frac{k}{k+1}\left(1\right)\)
Xét VP \(\frac{dk}{dk+d}=\frac{dk}{d\left(k+1\right)}=\frac{k}{k+1}\left(2\right)\)
Từ (1) và (2) ta có VT=VP -->Đpcm
b)Tiếp tục đặt như phần a ta xét VT:
\(\frac{4bk+9b}{7bk-6b}=\frac{b\left(4k+9\right)}{b\left(7k-6\right)}=\frac{4k+9}{7k-6}\left(1\right)\)
Xét VP \(\frac{4dk+9d}{7dk-6d}=\frac{d\left(4k+9\right)}{d\left(7k-6\right)}=\frac{4k+9}{7k-6}\left(2\right)\)
Từ (1) và (2) ta có :VT=VP -->Đpcm
dat a/b=c/d=k(k#0)
- suy ra a=bk(1)
- c=dk(2)
- thay(1)(2)vao bieu thuc a ta dc
4bk+9b/7bk-6b=4dk+9d/7dk-6d
b.(4k+9)/b.(7k-6)=d.(4k+9)/d.(7k-6)
b/b=d/d
cau b lam tuong tu y het nhu vay
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{c}=\frac{b}{d}=\frac{4a+2b}{4a+2d}\left(1\right)\)
\(\frac{a}{c}=\frac{b}{d}=\frac{7a-5b}{7c-5d}\left(2\right)\)
Từ (1)(2) => đpcm
ta có:
\(\frac{7a-11b}{4a+5b}=\frac{7c-11d}{4c+5d}\)
\(\Rightarrow\frac{7a-11b}{7c-11d}=\frac{4a+5b}{4c+5d}\)
\(\Leftrightarrow\frac{7a}{7c}=\frac{11b}{11d}=\frac{4a}{4c}=\frac{5b}{5d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Mặt khác:
\(\frac{a}{c}=\frac{b}{d}\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrowđpcm\)
\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}\)
Ta có a = bk
c = dk
=> \(\frac{4a+9b}{7a-6b}\)=\(\frac{4bk+9b}{7bk-6b}\)=\(\frac{b.\left(4k+9\right)}{b.\left(7k-6\right)}\)=\(\frac{4k+9}{7k-6}\)
\(\frac{4c+9d}{7c-6d}\)=\(\frac{4dk+9d}{7dk-6d}\)=\(\frac{d.\left(4k+9\right)}{d.\left(7k-6\right)}\)=\(\frac{4k+9}{7k-6}\)
=> \(\frac{4a+9b}{7a-6b}\)=\(\frac{4c+9d}{7c-6d}\)