Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:Ta có:\(a+7⋮a\)
\(\Rightarrow7⋮a\)
\(\Rightarrow a\inƯ\left(7\right)\)
\(Ư\left(7\right)=1;-1;7;-7\)
Suy ra \(a\in1;-1;7;-7\)
bà 3:\(a+1⋮a-2\)
\(a-2+3⋮a-2\)
\(3⋮a-2\)
\(\Rightarrow a-2\inƯ\left(3\right)\)
\(Ư\left(3\right)=1;3\);-1;-3
Suy ra:\(a\in3;5;1;-1.\)
Với \(a\in Z\)
Ta có:\(P=4a^2+4a\)
\(\Leftrightarrow P=4a\left(a+1\right)\)
Vì \(\hept{\begin{cases}4⋮4\\\left[a\left(a+1\right)\right]⋮2\end{cases}}\)
Nên: \(P⋮8\)
Vậy với\(a\in Z\) thì \(P=\left(4a^2+4a\right)⋮8\) (đpcm)
\(P=4a^2+4a\)
\(\Rightarrow P=4\left(a^2+a\right)⋮2\) (1)
\(\Rightarrow P=4\left(a^2+a\right)⋮4\) (2)
Từ (1) và (2) \(\Rightarrow P=4\left(a^2+a\right)⋮8\)
\(\Rightarrow P=4a^2+4a⋮8\left(đpcm\right)\)
1)
a) 1+5+5^2+5^3+....+5^101
=(1+5)+(5^2+5^3)+....+(5^100+5^101)
=6+5^2.(1+5)+...+5^100(1+5)
=6+5^2.6+...+5^100.6 chia hết cho 6 , vì mỗi số hạng đều chia hết cho 6
b) 2+2^2+2^3+...+2^2016
=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+1^10)+....+(2^2012+2^2013+2^2014+2^2015+2^2016)
=2.31+2^6.31+...+2^2012.31 chia hết cho 31
Tương tự như câu a lên mk rút gọn
2) còn bài a kì quá abc deg là sao nhỉ
b) abc chia hết cho 8 nên a ; b hoặc c chia hết cho 8
bạn nghĩ thử đi bài 2b dễ lắm nếu ko bt thì hỏi lại
4a2 + 4a
= 4(a2 + a)
= 4a(a + 1)
Ta thấy a(a + 1) là tích 2 số liên tiếp nên chia hết cho 2
=> đặt a(a + 1) = 2k
Ta có:
4.2k = 8k chia hết cho 8 (ĐPCM)
a, Ta có: A = 4a2 + 4a
=> A = 4a(a + 1)
Vì 4 chia hết cho 4
a(a+1) chia hết cho 2
=> A chia hết cho 8
b,Ta có: a5 = a4+1 có chữ số tận cùng giống chữ số tận cùng của n
=> a5 - a có chữ số tận cùng bằng 0
=> a5 - a chia hết cho 5 hay B chỉa hết cho 5
P = 4a2 + 4a = 4(a + a2)
Bây giờ chỉ còn CM a + a2 chia hết cho 2
a + a2 = a(a+ 1) chia hết cho 2
=> ĐPCM