Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) f(5) = 2; f(1) = 0; f(0) không tồn tại; f(-1) không tồn tại.
b) Để hàm số được xác định thì \(x-1\ge0\Leftrightarrow x\ge1\)
c) Gọi x0 là số bất kì thỏa mãn \(x\ge1\). Khi đó ta có:
\(h\left(x_0\right)=f\left[\left(x_0+1\right)-1\right]-f\left(x_0-1\right)=\sqrt{x_0}-\sqrt{x_0-1}\)
\(h\left(x_0\right)\left[f\left(x_0+1\right)+f\left(x_0\right)\right]=\left(\sqrt{x_0}-\sqrt{x_0-1}\right)\left(\sqrt{x_0}+\sqrt{x_0-1}\right)=x_0-\left(x_0-1\right)=1>0\)
Vì \(\sqrt{x_0}+\sqrt{x_0-1}>0\Rightarrow h\left(x_0\right)>0\)
Vậy thì với các giá trị \(x\ge1\) thì hàm số đồng biến.
\(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{x_1^2-4x_1+3-x_2^2+4x_2-3}{x_1-x_2}\)
\(=\dfrac{\left(x_1+x_2\right)\left(x_1-x_2\right)-4\left(x_1-x_2\right)}{x_1-x_2}=\left(x_1+x_2\right)-4\)
Khi \(x\in\left(-\infty;2\right)\) nên \(\left(x_1+x_2\right)-4< 2+2-4=0\)
=>Hàm số nghịch biến khi x<2
Khi \(x\in\left(2;+\infty\right)\) nên \(\left(x_1+x_2\right)-4>2+2-4=0\)
=>Hàm số đồng biến khi x>2
\(A=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\left(\dfrac{x_1+1}{x_1-2}-\dfrac{x_2+1}{x_2-2}\right):\left(x_1-x_2\right)\)
\(=\dfrac{x_1x_2-2x_1+x_2-2-x_1x_2+2x_2-x_1+2}{\left(x_2-2\right)\left(x_1-2\right)}\cdot\dfrac{1}{x_1-x_2}\)
\(=\dfrac{-3x_1+3x_2}{\left(x_2-2\right)\left(x_1-2\right)}\cdot\dfrac{1}{x_1-x_2}=\dfrac{-3}{\left(x_2-2\right)\left(x_1-2\right)}\)
Trường hợp 1: x<2
=>\(\left(x_1-2\right)\left(x_2-2\right)>0\)
=>A<0
=>Hàm số nghịch biến
Trường hợp 2: x>2
=>\(\left(x_1-2\right)\left(x_2-2\right)>0\)
=>A<0
=>Hàm số nghịch biến