K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2021

undefined

a) Để hàm số đồng biến thì k(k-3)>0

\(\Leftrightarrow\left[{}\begin{matrix}k>3\\k< 0\end{matrix}\right.\)

b) Để hàm số nghịch biến thì k(k-3)<0

hay 0<x<3

5 tháng 1 2022

+) Hệ số a: -2.

+) Hệ số b: 4.

+) Hàm số nghịch biến.

5 tháng 1 2022

a.

Hệ số a: -2

Hệ số b: 4

Do hệ số a nhỏ hơn 0 (-2<0) => Hàm số nghịch biến

b. 

undefined

5 tháng 1 2022

Hệ số a: -2. \(\Rightarrow\) Hàm số nghịch biến.

Hệ số b: 4.

 

a: Để hàm số đồng biến thì m+1>0

=>m>-1

Để hàm số nghịch biến thì m+1<0

=>m<-1

b: Để hai đường song song thì m+1=2

=>m=1

28 tháng 4 2023

đồng biến khi m-1>0 

=>m>1

Để hàm số đồng biến thì m-1>0

=>m>1

23 tháng 10 2021

a, Vì \(a=1>0\) nên đths đồng biến trên R

undefined

b, Vì (d1)//(d2) nên \(\left\{{}\begin{matrix}a=1\\b\ne3\end{matrix}\right.\)

Vì (d2) cắt trục hoành tại hoành độ 2 nên \(y=0;x=2\)

\(\Leftrightarrow0=2a+b=2+b\Leftrightarrow b=-2\left(tm\right)\)

Vậy đths là \(\left(d_2\right):y=x-2\)

a: f(x)=3x^2

a=3>0

=>Hàm số đồng biến khi x>0 và nghịch biến khi x<0

b: f(1)=f(-1)=3*1^2=3

f(2)=3*2^2=12

f(-4)=3*(-4)^2=48

c: f(x)=48

=>x^2=48/3=16

=>x=4 hoặc x=-4

d; loading...

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)