Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(9^7+81^4-27^5\)
\(=\left(3^2\right)^7+\left(3^4\right)^4-\left(3^3\right)^5\)
\(=3^{14}+3^{16}-3^{15}\)
\(=3^{14}.\left(1+3^2-3\right)\)
\(=3^{14}.7⋮7\)
=> đpcm
\(25^{25}+5^{49}-125^{16}\)
\(=\left(5^2\right)^{25}+5^{49}-\left(5^3\right)^{16}\)
\(=5^{50}+5^{49}-5^{48}\)
\(=5^{48}.\left(5^2+5-1\right)\)
\(=5^{48}.29⋮29\)
=> đpcm
Bài làm :
\(\text{1) }9^7+81^4-27^5\)
\(=\left(3^2\right)^7+\left(3^4\right)^4-\left(3^3\right)^5\)
\(=3^{14}+3^{16}-3^{15}\)
\(=3^{14}\left(1+3^2-3\right)\)
\(=3^{14}.7⋮7\)
=> Điều phải chứng minh
\(\text{2)}25^{25}+5^{49}-125^{16}\)
\(=\left(5^2\right)^{25}+5^{49}-\left(5^3\right)^{16}\)
\(=5^{50}+5^{49}-5^{48}\)
\(=5^{48}\left(5^2+5-1\right)\)
\(=5^{48}.29⋮29\)
=> Điều phải chứng minh
a) \(9^7+81^4-27^5=\left(3^2\right)^7+\left(3^4\right)^4-\left(3^3\right)^5\)
\(=3^{14}+3^{16}-3^{15}\)
\(=3^{14}\left(1+3^2-3\right)=3^{14}\cdot7⋮7\left(đpcm\right)\)
b) \(25^{25}+5^{49}-125^{16}=\left(5^2\right)^{25}+5^{49}-\left(5^3\right)^{16}\)
\(=5^{50}+5^{49}-5^{48}=5^{48}\left(5^2+5-1\right)\)
\(=5^{48}\cdot29⋮29\left(đpcm\right)\)
\(=5^{20}+\left(5^2\right)^{11}+\left(5^{ }^3\right)^7\)
=\(5^{^{ }20}+5^{22}+5^{21}\)
\(=5^{20}\cdot\left(1+5^2+5^1\right)\)
=\(5^{20}\cdot\left(1+25+5\right)\)
=\(5^{20}\cdot31\)
Vì 31 chia hết chó 31 nên
\(5^{20}+25^{^{ }11}+125^7\)chia hết cho 31
\(^{5^{20}+25^{11}+125^7}\)=\(1.5^{20}+25.25^{10}+\left(5^3\right)^7\)=\(1.5^{20}+25.\left(5^2\right)^{10}+5^{21}\)=\(1.5^{20}+25.5^{20}+5.5^{20}\)
=\(^{5^{20}.\left(1+25+5\right)}\)=\(5^{20}.31\)chia hết cho 31
Vậy \(5^{20}+25^{11}+125^7\)chia hết cho 31
25²⁵ + 5⁴⁹ - 125¹⁶
= (5²)²⁵ + 5⁴⁹ - (5³)¹⁶
= 5⁵⁰ + 5⁴⁹ - 5⁴⁸
= 5⁴⁸.(5² + 5 - 1)
= 5⁴⁸.24
ta có(^ là dấu mũ):
5^20+25^11+125^7=5^20+5^22+5^21
=5^20+5^20.5^2+5^21.5
=5^20.(1+5^2+5)=5^20.(1+25+5)=5^20.31 chia hết cho 31
Nếu sai chỗ nào thì nhắc mik nhé :)
\(5^{20}+25^{11}+125^7=5^{20}+5^{2^{11}}+5^{3^7}=5^{20}+5^{22}+5^{21}=5^{20}+5^{20}.5^2+5^{20}.5=5^{20}\left(5^2+5+1\right)=5^{20}.31\)Vì \(5^{20}.31⋮31\) nên \(\left(5^{20}+25^{11}+125^7\right)⋮31\)
5^61 + 25^31 + 125^21
= 5^61 + 5^62 + 5^63
= 5^61 x (1+5+25)
= 5^61 x 31 chia hết 31
5^61 + 25^31 + 125^21
= 5^61 + 5^62 + 5^63
= 5^61 x (1+5+25)
= 5^61 x 31 chia hết 31