\(\frac{2n+1}{n+1}\)với n thộc N và tìm n thuộc Z để A th...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi d=UCLN(2n+1;n+1)

\(\Leftrightarrow2n+1-2n-2⋮d\)

=>d=1

=>A là phân số tối giản

Để A là số nguyên thì \(2n+1⋮n+1\)

\(\Leftrightarrow2n+2-1⋮n+1\)

\(\Leftrightarrow n+1\in\left\{1;-1\right\}\)

hay \(n\in\left\{0;-2\right\}\)

27 tháng 8 2017

Gọi \(d=ƯCLN\left(2n+1;n+1\right)\left(d\in N\right)\)

\(\Leftrightarrow\hept{\begin{cases}2n+1⋮d\\n+1⋮d\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2n+1⋮d\\2n+2⋮d\end{cases}}\)

\(\Leftrightarrow1⋮d\)

\(\LeftrightarrowƯCLN\left(2n+1;n+1\right)=1\)

Vậy ....

2 tháng 7 2015

a, Gọi UCLN(2n+1, 3n+2) là d. Ta có:

2n+1 chia hết cho d=> 6n+3 chia hết cho d

3n+2 chia hết cho d=> 6n+4 chia hết cho d

=> 6n+4 - (6n+3) chia hết cho d

=> 1 chia hết cho d

=>ƯCLN(2n+1,3n+2)=1

=>\(\frac{2n+1}{3n+2}\)tối giản(đpcm)

13 tháng 3 2018

Ta có: theo bài ra \(\frac{2n+3}{4n+8}\)\(\frac{1}{4}\)<=> 4(2n+3) = 4n+8 <=> 8n+12 = 4n+8 <=> 8n-4n = 8-12 <=> 4n = -1 <=> n = -1

         gọi d là ước chung lớn nhất của 2n+3 và 4n+8.

suy ra ((4n+8) - (2n+3)) chia hết cho d

((4n+8) - (2n+3) + (2n+3)) chia hết cho d

(4n-8 - 2n-3 - 2n-3) chia hết cho d

2 chia hết cho d, suy ra d nhận giá trị 1;2. Mà d không thể bằng 2 (do 2n+3 lẻ với mọi số tự nhiên) nên d = 1. Vậy phân số đã cho tối giản.

21 tháng 7 2015

goi d=UCLN(n3+2n;n4+3n2+1)          (d\(\in\)N*)

\(\Rightarrow\)n3+2n va n4+3n2 +1 chia het cho d \(\Rightarrow\)n4+3n2+1-n(n3+2n) =n2+1 chia het cho d

n3+2n -n(n2+1)=n chia het cho d\(\Rightarrow\)n2 +1-n.n==1 chia het cho d\(\Rightarrow\)\(\in\)U(1)ma d lon nhat , d\(\in\)Nnen d=1 

do đó phân số trên là tối giản

9 tháng 3 2018

giỏi lắm hoàng cảm ơn nhiều

7 tháng 4 2019

đợi chút nha

7 tháng 4 2019

a.\(A=\frac{6n+7}{2n+1}=\frac{3\left(2n+1\right)-3+7}{2n+1}=3+\frac{4}{2n+1}\)

Để A nguyên thì 4 phải chia hết cho 2n+1

=> 2n+1 \(\varepsilon\)Ư(4) = {-4;-2;-1;1;2;4}

Mà 2n + 1 là số lẻ

=> 2n + 1 \(\varepsilon\){-1;1}

=> 2n \(\varepsilon\){-2;0}

=> n \(\varepsilon\){-1;0}

Vậy:...

17 tháng 7 2016

a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số

b) Để A nguyên thì 2n - 5 chia hết cho n + 3

=> 2n + 6 - 11 chia hết cho n + 3

=> 2.(n + 3) - 11 chia hết cho n + 3

Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3

=> n + 3 thuộc {1 ; -1; 11; -11}

=> n thuộc {-2; -4; 8; -14}

c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3

=> 2n - 5 chia hết cho d; n + 3 chia hết cho d

=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d

=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d

=> (2n + 6) - (2n - 5) chia hết cho d

=> 2n + 6 - 2n + 5 chia hết cho d

=> 11 chia hết cho d

=> d thuộc {1 ; 11}

Mà d nguyên tố => d = 11

Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11

=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11

=> 2.(n + 3) chia hết cho 11

Do (2,11)=1 => n + 3 chia hết cho 11

=> n = 11k + 8 ( k thuộc Z)

Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được

Với n khác 11k + 8 (k thuộc Z) thì A tối giản

17 tháng 7 2016

a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số

b) Để A nguyên thì 2n - 5 chia hết cho n + 3

=> 2n + 6 - 11 chia hết cho n + 3

=> 2.(n + 3) - 11 chia hết cho n + 3

Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3

=> n + 3 thuộc {1 ; -1; 11; -11}

=> n thuộc {-2; -4; 8; -14}

c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3

=> 2n - 5 chia hết cho d; n + 3 chia hết cho d

=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d

=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d

=> (2n + 6) - (2n - 5) chia hết cho d

=> 2n + 6 - 2n + 5 chia hết cho d

=> 11 chia hết cho d

=> d thuộc {1 ; 11}

Mà d nguyên tố => d = 11

Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11

=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11

=> 2.(n + 3) chia hết cho 11

Do (2,11)=1 => n + 3 chia hết cho 11

=> n = 11k + 8 ( k thuộc Z)

Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được

Với n khác 11k + 8 (k thuộc Z) thì A tối giản