\(\in\)N)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Nếu n chẵn thì bài toán được chứng minh

Nếu n lẻ thì n+3 chẵn thì n(n+3) chia hết cho 2

Vậy với mọi n thuộc N thì n(n+3) chia hết cho 2

13 tháng 9 2018

1) Gọi tổng của 6 số tự nhiên đó là \(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)+\left(a+4\right)+\left(a+5\right)\)

Ta có \(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)+\left(a+4\right)+\left(a+5\right)\)

\(=6a+15\)

\(=6.a+12+3\)

\(=6.\left(x+2\right)+3\)

Vì \(6.\left(x+2\right)⋮6\)nên \(6.\left(x+2\right)+3\)chia 6 dư 3

Vậy tổng của 6 số tự nhiên liên tiếp không chia hết cho 6

2) Ta có 3 là số lẻ nên 32018 là số lẻ

11 là số lẻ nên 112017 là số lẻ 

Do đó 32018-112017là số chẵn nên chia hết cho 2

3)\(n+4⋮n\)

có \(n⋮n\)nên để \(n+4⋮n\)thì \(4⋮n\)

\(\Rightarrow n\inƯ\left(4\right)=\left\{-1;1;-2;2;-4;4\right\}\)

4)\(3n+7⋮n\)

có \(3n⋮n\)nên để \(3n+7⋮n\)thì \(7⋮n\)

\(\Rightarrow n\inƯ\left(7\right)=\left\{-1;1;-7;7\right\}\)

21 tháng 7 2021

a) Ta có (am)n = am.am...am (định nghĩa) (có n thừa số am)

                   = am + m + .... + m (có n hạng tử m)

                   = am.n (đpcm)

b) Ta có 5333 = 53.111 =  (53)111 = 125111

3555 = 35.111 = (35)111 = 243111

Nhận thấy 125 < 243 

=> 125111 < 243111

=> 5333 < 3555

b) Ta có 2400 = 24.100 = (24)100 = 16100

4200 = 42.100 = (42)100 = 16100

=> 2400 = 4200 (= 16100

18 tháng 11 2018

bài 3 là tìm n thuộc N

20 tháng 11 2018

các bn làm bài 3 , 6 thôi

7 tháng 8 2015

3^n+3+3^n+1+2^n+3+2^n+2 chia hết cho 6

=3^n.30+2^n.12

Suy ra 3^n+3+3^n+1+2^n+2^n+2 chia hết cho 6

nhớ tích đúng cho mình nha

7 tháng 8 2015

http://olm.vn/hoi-dap/question/160314.html

16 tháng 7 2015

Phân tích A thành nhân tử được

\(A=n\left(n+1\right)\left(n+2\right)\)

Từ đây việc chứng minh còn lại là khá dễ.

18 tháng 9 2019

và dược 1 dis

17 tháng 6 2015

\(=3^{n+2}+3^n-2^{n+2}-2^n=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

\(=10.3^n-2.2^{n-1}.5=10.3^n-10.2^{n-1}=10\left(3^n-2^{n-1}\right)\)

Chia hết cho 10 

(l ike nha)

17 tháng 2 2019

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)

\(=3^n\cdot10-2^n\cdot5\) 

\(2^n⋮2\) ; \(5⋮5\)  và \(\left(5;2\right)=1\) \(\Rightarrow2^n\cdot5⋮10\)

\(3^n\cdot10⋮10\)

\(\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\)

17 tháng 2 2019

\(=3^{n+2}+3^n-\left(2^{n+2}+2^n\right)\))

\(=3^n\left(3^2+1\right)-2^{n-2}\left(2^4+2^2\right)\)

\(=3^n\cdot10-2^{n-1}\cdot10\)

=10(3^n+2^n-1) chia hết cho 10

2 tháng 12 2015

Ta có :2n+1=2n-6+7

mà 2n-6 chia hết cho n-3

=>7 chia hết cho n-3

=>n-3 thuộc Ư(7)={1;7}

Nếu n-3=1 thì n=4

Nếu n-3=7 thì n=10

    Vậy n thuộc {4;10}