Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left(a-b\right)^2< 2\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2-2ab+b^2< 2a^2+2b^2\)
\(\Leftrightarrow a^2-2a^2-2ab+b^2-2b^2< 0\)
\(\Leftrightarrow-a^2-2ab-b^2< 0\)
\(\Leftrightarrow-\left(a^2+2ab+b^2\right)< 0\)
\(\Leftrightarrow-\left(a+b\right)^2.\left(-1\right)>0.\left(-1\right)\)
\(\Leftrightarrow\left(a+b\right)^2>0\forall a;b\)( luôn đúng )
Vậy \(\left(a-b\right)^2< 2\left(a^2+b^2\right)\)( đpcm )
_Linh : Chả hiểu đoạn cuối bạn làm như thế nào nữa, ai lại đi nhân một số với 0 :))
\(\left(a-b\right)^2< 2\left(a^2+b^2\right)\Leftrightarrow a^2+b^2+2ab>0\Leftrightarrow\left(a+b\right)^2>0\)
Chắc là phải dấu \(\ge\) bạn nhé !
Ta chia cả 2 vế a+b<a.b cho a.b
Vậy ta phải chứng minh rằng a+b<a.b đồng nghĩa với việc chứng minh (a+b)/a.b<(a.b)/(a.b)
khi và chỉ khi (a+b)/(a.b)<1
Ta phân tích (a+b)/(a.b) =a/(a.b) + b/(a.b) = 1/b+1/a
Ta phải cm 1/b+1/a <1 mà điều này luôn đúng khi a và b lớn hơn 2
vậy ta có điều phải chứng minh
( a-b )^2 < 2(a^2 + b^2)
<=> a^2 - 2ab + b^2 < 2a^2 + 2b^2
<=> 2a^2 + 2b^2 - a^2 + 2ab - b^2 > 0
<=> a^2 + 2ab + b^2 > 0
<=> (a + b)^2 > 0 (luôn đúng)
\(\left(a-b\right)^2< 2.\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2-2ab+b^2< 2a^2+2b^2\)
\(\Leftrightarrow2a^2+2b^2-a^2+2ab-b^2>0\)
\(\Leftrightarrow a^2+2ab+b^2>0\)
\(\Leftrightarrow\left(a+b\right)^2>0\)(luôn đúng)
Vậy \(\left(a-b\right)^2< 2.\left(a^2+b^2\right)\)