K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 2 2024

Lời giải:

$A=9+2.3^2+2.3^3+2.3^4+...+2.3^{2023}$

$A-9=2(3^2+3^3+3^4+...+3^{2023})$

$3(A-9)=2(3^3+3^4+3^5+...+3^{2024})$

$\Rightarrow 3(A-9)-(A-9)=2(3^{2024}-3^2)$

$2(A-9)=2.3^{2024}-18$

$\Rightarrow 2A-18=2.3^{2024}-18$

$\Rightarrow A=3^{2024}\vdots 3^{2023}$ (đpcm)

24 tháng 12 2023

Em nên viết bằng công thức toán học em nhé, như vậy sẽ giúp mọi người hiểu đề đúng và hỗ trợ tốt nhất cho em!

P
10 tháng 11 2023

a) \(A=2+2^2+...+2^{2024}\)

\(2A=2^2+2^3+...+2^{2025}\)

\(2A-A=2^2+2^3+...+2^{2025}-2-2^2-...-2^{2024}\)

\(A=2^{2025}-2\) 

b) \(2A+4=2n\)

\(\Rightarrow2\cdot\left(2^{2025}-2\right)+4=2n\)

\(\Rightarrow2^{2026}-4+4=2n\)

\(\Rightarrow2n=2^{2026}\)

\(\Rightarrow n=2^{2026}:2\)

\(\Rightarrow n=2^{2025}\) 

c) \(A=2+2^2+2^3+...+2^{2024}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2023}+2^{2024}\right)\)

\(A=2\cdot3+2^3\cdot3+...+2^{2023}\cdot3\)

\(A=3\cdot\left(2+2^3+...+2^{2023}\right)\)

d) \(A=2+2^2+2^3+...+2^{2024}\)

\(A=2+\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2022}+2^{2023}+2^{2024}\right)\)

\(A=2+2^2\cdot7+2^5\cdot7+...+2^{2022}\cdot7\)

\(A=2+7\cdot\left(2^2+2^5+...+2^{2022}\right)\)

Mà: \(7\cdot\left(2^2+2^5+...+2^{2022}\right)\) ⋮ 7

⇒ A : 7 dư 2 

10 tháng 11 2023

cái câu d nó cứ sao sao ý bn

hiu

GH
6 tháng 8 2023

Bài 1: 

a) 02002 < 02023

 

b) 20220 = 20230

 

c) 549 < 5510

d) ( 4 + 5 )3 > 4+ 52

đ) 92 - 32 > ( 9 - 3 )2

Bài 2:

a) 32 x 43 - 32 + 333

= 9 x 64 - 9 + 333

= 576 - 9 + 333

= 567 + 333

= 900

b) 5 x 43 + 24 x 5 + 410

= 5 x 64 + 24 x 5 + 1

= 5 x ( 64 + 24 ) + 1

= 5 x 88 + 1

= 440 + 1

= 441

c) 23 x 42 + 32 x 5 - 40 x 12023

= 8 x 16 + 9 x 5 - 40 x 1

= 128 + 45 - 40

= 133

6 tháng 8 2023

Bài 1 :

a) \(0^{2002}=0;0^{2023}=0\Rightarrow0^{2002}=0^{2023}\)

b) \(2022^0=1;2023^0=1\Rightarrow2022^0=2023^0\)

c) \(54^9< 55^9;55^9< 55^{10}\Rightarrow54^9< 55^{10}\)

d) \(\left(4+5\right)^3>\left(4+5\right)^2;\left(4+5\right)^2>4^2+5^2\Rightarrow\left(4+5\right)^3>4^2+5^2\)

đ) \(9^2-3^2=81-9=82;\left(9-3\right)^2=6^2=36\Rightarrow9^2-3^2>\left(9-3\right)^2\)

P
28 tháng 9 2023

\(1+3+3^2+3^3+...+3^{2023}\)

\(=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{2022}+3^{2023}\right)\)

\(=4+3^2\cdot\left(1+3\right)+...+3^{2022}\cdot\left(1+3\right)\)

\(=4+4\cdot3^2+4\cdot3^4+....+4\cdot3^{2022}\)

\(=4\cdot\left(1+3^2+3^4+...+3^{2022}\right)\)

Mà: \(4\cdot\left(1+3^2+3^4+...+3^{2022}\right)\) ⋮ 4

\(\Rightarrow1+3+3^2+3^3+....+3^{2023}\) ⋮ 4 

28 tháng 9 2023

Đặt \(A=1+3+3^2+...+3^{2023}\)

\(A=4+3^2\left(1+3\right)+...+3^{2022}\left(1+3^{2021}\right)\)

\(=4\left(1+3^2+...+3^{2022}\right)⋮4\)

\(\Rightarrow A⋮4\left(đpcm\right)\)

12 tháng 8 2023

2S = 1 + 3 + 3² + 3³ + ... + 3¹¹

⇒ 6S = 3 + 3² + 3³ + 3⁴ + ... + 3¹²

⇒ 4S = 6S -  2S = (3 + 3² + 3³ + 3⁴ + ... + 3¹²) - (1 + 3 + 3² + 3³ + ... + 3¹¹)

= 3¹² - 1

= 531440

⇒ S = 531440 : 4

= 132860 ⋮ 10

Vậy S ⋮ 10

18 tháng 12 2021

gải giúp mình với

7 tháng 1 2022

S = 1 + 3 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39 = (1 + 3) + (32 + 33) + (34 + 35) + (36 + 37) + (38 + 39) = 1.(1 + 3) + 32.(1 + 3) + 34.(1 + 3) + 36​.(1 + 3) + 38​.(1 + 3) = (1 + 3).(1 + 32 + 34 + 36 + 38) = 4.(1 + 32 + 34 + 36 + 38) => S ⋮ 4. Vậy S ⋮ 4 (đpcm)