\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}>2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2018

\(=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+...+\frac{1}{8}\right)+\left(\frac{1}{9}+...+\frac{1}{16}\right)+\left(\frac{1}{17}+...+\frac{1}{32}\right)+\left(\frac{1}{33}+...+\frac{1}{64}\right)\)

\(=1+\frac{1}{2}+\frac{1}{4}.2+\frac{1}{8}.4+\frac{1}{16}.8+\frac{1}{32}.16+\frac{1}{64}.32\)

\(=1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\)

\(=1+\frac{1}{2}.6\)

\(=1+3\)

\(=4\)

~~ Bố thí cái li.ke ~~

1 tháng 6 2016

B = \(1-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}\right)\)

Xét \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2016}=1-\frac{1}{2016}=\frac{2015}{2016}\)

Do đó B > 1 - \(\frac{2015}{2016}=\frac{1}{2016}\)

27 tháng 12 2017

Ta có : 

A= 1+ 1/2 + 1/3 +1/4 + ...+ 1/63 + 1/64 

   =1 + ( 1/2 + 1/3 + 1/4 ) + ( 1/5 +1/6 + ..+1/8 ) + ( 1/9 + 1/10 + ..+ 1/16 ) + ( 1/17  + 1/18 + ...+ 1/32 ) + ( 1/33 + 1/34 + ...+1/63 + 1/64 ) 

=> A > 1 + ( 1/2 + 1/4.2 ) + 1/8.4 + 1/16.8 + 1/32.16 + 1/64.32 

     A > 1 + 1/2 + 1/2 + 1/2 +1/2 

  =>A > 4

27 tháng 12 2017

thanks

6 tháng 4 2017

\(A=1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2010^2}>1-\frac{1}{2.3}-\frac{1}{3.4}-...-\frac{1}{2009.2010}\)

\(=1-\frac{1}{2}-\frac{1}{2010}=\frac{1004}{2010}>\frac{1}{2010}\Rightarrow A>\frac{1}{2010}\)

4 tháng 2 2018

cần trả lời ko bn

2 tháng 12 2019

Ta có:

\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)

\(.............\)

\(\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}\)

Khi đó:

\(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+.....+\frac{1}{\sqrt{100}}\)

\(>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+.......+\frac{1}{\sqrt{100}}\left(100sohang\right)\)

\(=10\)

2 tháng 12 2019

Có BĐT sau:

\(\sqrt{\left(n-1\right)\left(n+1\right)}< n\)

\(\Leftrightarrow\left(n-1\right)\left(n+1\right)< n^2\)

\(\Leftrightarrow n^2-1< n^2\)

\(\Leftrightarrow-1< 0\left(true!!\right)\)

Áp dụng vào ta có:

\(\sqrt{2019\cdot2021}< 2020\Rightarrowđpcm\)