Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)
..................
\(\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)
=> \(\frac{1}{\sqrt{1}}\)+ \(\frac{1}{\sqrt{2}}\)+ ......... + \(\frac{1}{\sqrt{100}}\)> 1/10 + 1/10 + ...... +1/10 ( có 100 phân số 1/10 )
= 100/10 = 10
=> ĐPCM
Tk mk nha
Do \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{2}}>...>\frac{1}{\sqrt{100}}\)
\(\Rightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>100.\frac{1}{\sqrt{100}}\)
\(=\sqrt{100}=10\RightarrowĐPCM\)
Ta có:\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}};\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}};...;\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}\) và \(\frac{1}{\sqrt{100}}=\frac{1}{10}\)
=>\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{99}}+\frac{1}{\sqrt{100}}>\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}\) (100 số hạng 1/10)
\(=100.\frac{1}{10}\)
\(=10\) (đpcm)
đề sai
chứng minh ngược lại C/m:>10
căn2<can3<can 4=>
1/căn2>1/căn3>1/căn4
1/căn2+1/can3+1/Căn4>3/can4=3/2
1/can5+....+1/can9>5.1/can9=5/3
1/can10+...+1/can16>7/can16=7/4
...
1/can81+...1/can100>18.1/can100= 19/10
A>B=1+3/2+5/3+7/4+...+19/10>10
Đề sai thật.
Xin phép sửa lại:
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>10\)
Giải:
\(\sqrt{1}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)
\(\sqrt{2}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)
....
\(\sqrt{99}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)
Cộng từng vế trên HĐT ta có:
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{99}}+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}=\frac{100}{\sqrt{100}}=\frac{100}{10}\)
\(=10\)
Ta có :
\(\frac{1}{\sqrt{1}}>\frac{1}{10}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{10}\)
.....
\(\frac{1}{\sqrt{99}}>\frac{1}{10}\)
\(\frac{1}{\sqrt{100}}=\frac{1}{10}\)
Cộng vế theo vế ta có :\(\frac{1}{\sqrt{1}}\frac{1}{\sqrt{2}}+......+\frac{1}{\sqrt{99}}+\frac{1}{100}>100.\frac{1}{10}=10\)
( Bạn đặt A = (...) biểu thức đã cho )
Ta có :
\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}\)
\(............\)
\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)
\(\Rightarrow\)\(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\)
\(\Rightarrow\)\(A>100.\frac{1}{\sqrt{100}}=\frac{100}{\sqrt{100}}=\frac{100}{10}=10\)
\(\Rightarrow\)\(A>10\) ( đpcm )
Vậy \(A>10\)
Chúc bạn học tốt ~
Ta có:
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\Rightarrow\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}=100.\frac{1}{\sqrt{100}}=10\left(đpcm\right)\)
Dấu "⇒" mình đánh nhầm....Bạn Lê Phương Uyên Nhi chuyển thành dấu ">" nhé!!!
Ta có:\(\frac{1}{\sqrt{1}}>\frac{1}{10}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{10}\)
\(\frac{1}{\sqrt{3}}>\frac{1}{10}\)
...........
\(\frac{1}{\sqrt{100}}=\frac{1}{10}\)
\(\Rightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}\)
=\(100.\frac{1}{10}=10\)
=> đpcm ( Tự KL nhé)
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\)
Ta có \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)
...
\(\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}\)
=> \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\)
(có 100 số hạng \(\frac{1}{\sqrt{100}}\))
=>\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\)\(>\frac{1}{\sqrt{100}}.100\)
=>\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\)\(\ge\frac{1}{10}.100=10\)
Vậy \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>10\)
Học tốt
Ta có :
\(1>\frac{1}{10}=\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}\)
\(............\)
\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)
\(\Rightarrow\)\(A=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\)
Do từ \(1\) đến \(100\) có \(100-1+1=100\) số tự nhiên nên có \(100\) phân số \(\frac{1}{\sqrt{100}}\) ta được :
\(A>100.\frac{1}{\sqrt{100}}=\frac{100}{\sqrt{100}}=\frac{100}{10}=10\)
\(\Rightarrow\)\(A>10\) ( đpcm )
Vậy \(A>10\)
Chúc bạn học tốt ~
Ta có:
\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)
\(.............\)
\(\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}\)
Khi đó:
\(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+.....+\frac{1}{\sqrt{100}}\)
\(>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+.......+\frac{1}{\sqrt{100}}\left(100sohang\right)\)
\(=10\)
Có BĐT sau:
\(\sqrt{\left(n-1\right)\left(n+1\right)}< n\)
\(\Leftrightarrow\left(n-1\right)\left(n+1\right)< n^2\)
\(\Leftrightarrow n^2-1< n^2\)
\(\Leftrightarrow-1< 0\left(true!!\right)\)
Áp dụng vào ta có:
\(\sqrt{2019\cdot2021}< 2020\Rightarrowđpcm\)