K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2

A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{10^2}\) < 1

\(\dfrac{1}{2^2}\)  \(< \dfrac{1}{1.2}\) = \(\dfrac{1}{1}-\dfrac{1}{2}\)

\(\dfrac{1}{3^2}\) < \(\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3}\)

\(\dfrac{1}{4^2}\)  < \(\dfrac{1}{3.4}\) =  \(\dfrac{1}{3}-\dfrac{1}{4}\)

......< .......................

\(\dfrac{1}{9^2}\) < \(\dfrac{1}{8.9}\) = \(\dfrac{1}{8}\) - \(\dfrac{1}{9}\)

\(\dfrac{1}{10^2}\) < \(\dfrac{1}{9.10}\) = \(\dfrac{1}{9}-\dfrac{1}{10}\)

Cộng vế với vế ta có:

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{10^2}\) < \(1-\dfrac{1}{10}\) < 1 (đpcm)

 

Đặt vế trái bằng A

Ta có\(\dfrac{1}{2^2}\)=\(\dfrac{1}{4}\)

\(\dfrac{1}{3^2}\)<\(\dfrac{1}{2.3}\)

 

\(\dfrac{1}{4^2}\)<\(\dfrac{1}{3.4}\)

........

\(\dfrac{1}{10^2}\)<\(\dfrac{1}{9.10}\)

vậy A< \(\dfrac{1}{4}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{10}\)=\(\dfrac{13}{20}\)<1

\(\dfrac{1}{3^2}>\dfrac{1}{3\cdot4}=\dfrac{1}{3}-\dfrac{1}{4}\)

\(\dfrac{1}{4^2}>\dfrac{1}{4\cdot5}=\dfrac{1}{4}-\dfrac{1}{5}\)

...

\(\dfrac{1}{100^2}>\dfrac{1}{100}-\dfrac{1}{101}\)

Do đó: \(\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}>\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{100}-\dfrac{1}{101}=\dfrac{1}{3}-\dfrac{1}{101}=\dfrac{98}{303}>\dfrac{90.9}{303}=\dfrac{3}{10}\)(1)

\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)

\(\dfrac{1}{4^2}< \dfrac{1}{3}-\dfrac{1}{4}\)

...

\(\dfrac{1}{100^2}< \dfrac{1}{99}-\dfrac{1}{100}\)

Do đó: \(\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

=>\(\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}-\dfrac{1}{100}=\dfrac{49}{100}< \dfrac{50}{100}=\dfrac{1}{2}\)(2)

Từ (1),(2) suy ra \(\dfrac{3}{10}< \dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}\)

26 tháng 2 2022

Ta có \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};...;\dfrac{1}{10^2}< \dfrac{1}{9.10}\)

cộng vế với vê sta đc 

\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}=1-\dfrac{1}{10}=\dfrac{9}{10}< 1\)

Vậy ta có đpcm 

26 tháng 2 2022

undefined

19 tháng 4 2023

Nhận xét:

1/2 mũ 2 + 1/3 mũ 2 + 1/4 mũ 2 + ... + 1/10 mũ 2 <1/1.2 + 1/2.3 + 1/3.4 + ... + 1/ 9.10

Ta có:

A = 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/9.10

A = 1 - 1/2 + 1/2 - 1/3 + 1/3 -1/4 + ... + 1/9 - 1/10

A = 1 - 1/10

A = 9/10 

=> A < 1

Mà S < A

=> S < 1

 

19 tháng 4 2023

S  <  1

1/2^2<1/1*2

1/3^2<1/2*3

...

1/10^2<1/9*10

=>\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}=1-\dfrac{1}{10}=\dfrac{9}{10}\)

=>A<9/10

=>A<1

18 tháng 9 2022

Ta có:
1/2^2 > 1/2.3
1/3^2 > 1/3.4
...
1/10^2 > 1/10.11
-> Cộng dọc theo vế ta có:
1/2^2+1/3^2+...+1/10^2 > 1/2.3+1/3.4+...+1/10.11
                                         = 1/2-1/3+1/3-1/4+...+1/10-1/11 

                                         = 1/2 - 1/11 = 9/22  (đpcm)         

10 tháng 5 2021

`S=1/19+1/19^2+1/19^3+........+1/19^20`

`=>19S=1+1/19+1/19^2+.....+1/19^19`

`=>19S-S=18S=1-1/19^20<1`

`=>S<1/18(đpcm)`

Giải:

S=\(\dfrac{1}{19}+\dfrac{1}{19^2}+\dfrac{1}{19^3}+...+\dfrac{1}{19^{10}}\) 

19S=\(1+\dfrac{1}{19}+\dfrac{1}{19^2}+...+\dfrac{1}{19^9}\) 

19S-S=\(\left(1+\dfrac{1}{19}+\dfrac{1}{19^2}+...+\dfrac{1}{19^9}\right)-\left(\dfrac{1}{19}+\dfrac{1}{19^2}+\dfrac{1}{19^3}+...+\dfrac{1}{19^{10}}\right)\) 

18S=1-\(\dfrac{1}{19^{10}}\) 

S=(1-\(\dfrac{1}{19^{10}}\) ):18

S=\(1:18-\dfrac{1}{19^{10}}:18\) 

S=\(\dfrac{1}{18}-\dfrac{1}{19^{10}.18}\) 

⇒S<\(\dfrac{1}{18}\) (đpcm)

Chúc bạn học tốt!

11 tháng 4 2017

Help me!!!khocroi

11 tháng 4 2017

Bài này giải ra dài lắm;

Gợi ý : với câu a) cm 1<A<2

với câ u b) 0<B<1

với câu c) áp dụng bài toán của ông gao í; cách tỉnh tổng từ 1->100 trong sách GK 6 có nhé

Mong bạn giải ra

27 tháng 7 2021

\(M=\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{105}+\dfrac{1}{120}\)

\(M=2.\left(\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+...+\dfrac{1}{240}\right)\)

\(M=2.\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{15.16}\right)\)

\(M=2.\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)\)

\(M=2.\left(\dfrac{1}{4}-\dfrac{1}{16}\right)\)

\(M=2.\dfrac{3}{16}\)

\(M=\dfrac{3}{8}\)

Vậy \(\dfrac{1}{3}< M< \dfrac{1}{2}\)

14 tháng 7 2021

\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{2\cdot2}+\dfrac{1}{2\cdot2}-\dfrac{1}{2\cdot2\cdot2}+\dfrac{1}{2\cdot2\cdot2}-\dfrac{1}{2\cdot2\cdot2\cdot2}+.....+\dfrac{1}{2^{10}}\)

\(A=1-\dfrac{1}{2^{10}}\)

\(A+\dfrac{1}{2^{10}}=1-\dfrac{1}{2^{10}}+\dfrac{1}{2^{10}}=1\left(dpcm\right)\)

Cảm ơn rất nhiều ạyeu