\(x-x^2-1< 0\) với mọi x

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2021

\(x-x^2-1=-\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{3}{4}=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}< 0\forall x\)

2 tháng 10 2021

hằng đẳng thức 2= (x-1)2-1<0

GTLN của (x-1)2chỉ có thể là 0 nên với mọi x ta có x-x2-1<0

23 tháng 7 2017

a. \(x^2+3x+5\)

\(=x^2+2.x^2.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)

=> đpcm

23 tháng 7 2017

b. \(4x^2+5x+7\)

\(=\left(2x\right)^2-2.2x.\dfrac{5}{4}+\dfrac{25}{16}+\dfrac{87}{16}\)

= \(\left(2x+\dfrac{5}{4}\right)^2\) + \(\dfrac{87}{16}\) \(\ge\dfrac{87}{16}\)

=> đpcm

2 tháng 9 2018

bạn cố tìm mọi cánh biến vế trái thành 1 dạng bình phương

rồi nó sẽ racau trả lời , gợi ý đó

13 tháng 7 2019

sử dụng hằng đẳng thức 1.2

14 tháng 10 2017

a) x2 - 2xy + y2 + 1

= ( x - y)2 + 1

Do : ( x - y)2 lớn hơn hoặc bằng 0 với mọi số tực x và y

--> ( x -y)2 + 1 lớn hơn hoặc bằng 1 > 0 với mọi số thực x và y

Khi và chỉ khi : x - y =0 --> x =y

b) x - x2 - 1

= - ( x2 - x + 1)

= - [ x2 - 2.\(\dfrac{1}{2}\)x + (\(\dfrac{1}{2}\))2 - \(\dfrac{1}{4}+1\)]

= - ( x - \(\dfrac{1}{2}\))2 + \(\dfrac{1}{4}-1\)

= - ( x - \(\dfrac{1}{2}\))2 - \(\dfrac{3}{4}\)

Do : - ( x - \(\dfrac{1}{2}\))2 nhỏ hơn hoặc bằng 0 với mọi số thực x

--> - ( x - \(\dfrac{1}{2}\))2 - \(\dfrac{3}{4}\) nhỏ hơn hoặc bằng - \(\dfrac{3}{4}\)với mọi số thực x

Khi và chỉ khi : x - \(\dfrac{1}{2}\)=0 --> x = \(\dfrac{1}{2}\)

26 tháng 4 2018

bn giang gì đó ơi làm nè:)

26 tháng 4 2018
-10+4x-x^2 = -(x^2-4x+10)=-(x^2-4x+4+6)=-((x-2)^2+6) vì (x-2)^2 +6 lớn hơn 0 suy ra -((x-2)^2+6) nhỏ hơn 0 mà x^2+1 lớn hơn 0 suy ra .....
6 tháng 10 2018

a) Ta có \(2x^2-8x+13=2x^2-8x+8+5\)

\(=2\left(x^2-4x+4\right)+5\)

\(=2\left(x-2\right)^2+5\ge5\forall x\)

6 tháng 10 2018

Giả sử trước khi làm nhé 

\(a)\)\(2x^2-8x+13>0\)

\(\Leftrightarrow\)\(4x^2-16x+26>0\)

\(\Leftrightarrow\)\(\left(4x^2-16+16\right)+10>0\)

\(\Leftrightarrow\)\(\left(2x-4\right)^2+10\ge10>0\) ( luôn đúng ) 

Vậy ... 

\(b)\)\(-2+2x-x^2< 0\)

\(\Leftrightarrow\)\(x^2-2x+2>0\)

\(\Leftrightarrow\)\(\left(x^2-2x+1\right)+1>0\)

\(\Leftrightarrow\)\(\left(x-1\right)^2+1\ge1>0\) ( luôn đúng ) 

Vậy ... 

Chúc bạn học tốt ~ 

4 tháng 12 2017

- x2 + 2x - 2

= - ( x2 - 2x + 1) - 1

= - ( x - 1)2 - 1

Do : - ( x - 1)2 nhỏ hơn hoặc bằng 0 với mọ x thuộc R

=> - ( x - 1)2 - 1 nhỏ hơn hoặc bằng -1 với ọõi x thuộc R

Dấu bằng xảy ra khi : x - 1 = 0 => x = 1

Vậy,....

3 tháng 7 2017

Bài 1:

\(x-x^2-1=-x^2+x-1\)

\(=-x^2+x-\frac{1}{4}-\frac{3}{4}\)

\(=-\left(x^2-x+\frac{1}{4}\right)-\frac{3}{4}\)

\(=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}\)

Xảy ra khi \(x=\frac{1}{2}\)

Bài 2:

\(\frac{2n^2-n+2}{2n+1}=\frac{n\left(2n+1\right)-2n+2}{2n+1}=\frac{n\left(2n+1\right)}{2n+1}-\frac{2n-2}{2n+1}\)

\(=n-\frac{2n+1-3}{2n+1}=n-\frac{2n+1}{2n+1}-\frac{3}{2n+1}\)\(=n-1-\frac{3}{2n+1}\)

Để \(2n^2-n+2\) chia hết \(2n+1\)

Thì 3 chia hết \(2n+1\)\(\Rightarrow2n+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Rightarrow n=\left\{....\right\}\) tự lm nốt

3 tháng 7 2017

Ta có : 2n- n  + 2 chia hêt cho 2n + 1

<=> 2n2 + n - 2n + 2 chia hết cho 2n + 1

<=> n(2n + 1) - 2n - 1 + 3  chia hết cho 2n + 1

<=> n(2n + 1) - (2n + 1) + 3 chia hết cho 2n + 1

<=> (2n + 1)(n - 1) + 3 chia hết cho 2n + 1

=> 3 chia hết cho 2n + 1

=> 2n + 1 thuộc Ư(3) = {-3;-1;1;3}

Ta có bảng : 

2n + 1-3-113
2n-4-202
n-2-101
26 tháng 10 2017

Bạn nhân A với -3 rồi chứng minh -3A>0, suy ra a<0. Mình chỉ gợi ý thôi, bạn nên tự suy luận 

26 tháng 10 2017

SAi đề rồi, sửa lại đi

28 tháng 6 2019

a) \(-\left(x^2-6x+10\right)=-\left(x^2-6x+9+1\right)=-\left[\left(x-3\right)^2+1\right]\le-1< 0\forall x\)

BĐT đúng

b) \(x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

BĐT đúng

c)Dấu "=" ko xảy ra???

\(=\left(4x^2+2.2x.y+y^2\right)+2\left(2x+y\right)+1+2\)

\(=\left(2x+y\right)^2+2.\left(2x+y\right).1+1+1\)

\(=\left(2x+y+1\right)^2+1\ge1>0\) (đpcm)

18 tháng 9 2019

a. −x2 + 6x - 10

= −(x2 − 6x) − 10

= −(x2 − 2.x.3 + 32 − 9) − 10

= −(x − 3)2 + 9 − 10

= −(x − 3)2 −1

(x − 3)2 ≥ 0 ∀ x ⇒ −(x − 3)2 ≤ 0 ⇒ −(x − 3)2 −1 ≤ −1

Vậy −(x − 3)2 −1 < 0 ⇒ −x2 + 6x - 10 luôn âm với mọi x