Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(x^2+3x+5\)
\(=x^2+2.x^2.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)
\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
=> đpcm
Ta có \(x^2-2x+2=\left(x-1\right)^2+1>0\)
\(\Rightarrow\frac{-4}{x^2-2x+2}< 0\)
\(\Rightarrow\frac{-4}{x^2-2x+2}-5< 0\)(đúng vóiư mọi x)
a, (x-5).(x-1) >0
<=> x-5>0 và x-1>0
<=> x-5>0
<=> x>5
x-1>0
<=> x>1
Vậy x>5
b, (2x-3).(x+1) <0
<=> 2x-3<0 và x+1<0
2x-3<0 <=> 2x<3 <=> x<2/3
x+1<0 <=> x<-1
Vậy x<2/3
c, 2x2 - 3x +1>0
<=> 2x2 - 2x- x +1>0
<=>(x-1). (2x-1) >0
<=> x-1>0 và 2x-1>0
x-1>0 <=> x>1
2x-1>0 <=> 2x>1 <=> x>1/2
Vậy x>1/2
a) Ta có \(2x^2-8x+13=2x^2-8x+8+5\)
\(=2\left(x^2-4x+4\right)+5\)
\(=2\left(x-2\right)^2+5\ge5\forall x\)
Giả sử trước khi làm nhé
\(a)\)\(2x^2-8x+13>0\)
\(\Leftrightarrow\)\(4x^2-16x+26>0\)
\(\Leftrightarrow\)\(\left(4x^2-16+16\right)+10>0\)
\(\Leftrightarrow\)\(\left(2x-4\right)^2+10\ge10>0\) ( luôn đúng )
Vậy ...
\(b)\)\(-2+2x-x^2< 0\)
\(\Leftrightarrow\)\(x^2-2x+2>0\)
\(\Leftrightarrow\)\(\left(x^2-2x+1\right)+1>0\)
\(\Leftrightarrow\)\(\left(x-1\right)^2+1\ge1>0\) ( luôn đúng )
Vậy ...
Chúc bạn học tốt ~
a, \(A=\frac{5-7x}{x^2+x+1}-\frac{7}{3}\)
Để A xác định thì \(x^2+x+1\ne0\) \(\Leftrightarrow x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\ne0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ne0\)
Mà \(\left(x+\frac{1}{2}\right)^2+\frac{3}{2}>0\text{ }\forall\text{ }x\)
⇒ A xác định với mọi x.(đpcm)
b, \(B=\frac{x+10}{4x^2+2x+3}-\frac{x^2-4}{2}\)
Để B xác định thì \(4x^2+2x+3\ne0\) \(\Leftrightarrow\left(2x\right)^2+2.2x.\frac{1}{2}+\frac{1}{4}+\frac{11}{4}\ne0\)
\(\Leftrightarrow\left(2x+\frac{1}{2}\right)^2+\frac{11}{4}\ne0\)
Mà \(\left(2x+\frac{1}{2}\right)^2+\frac{11}{4}>0\forall x\)
⇒ B xác định với mọi x.(đpcm)
1) \(\frac{6x-2}{8}-\frac{3x-6}{8}-\frac{8}{8}>\frac{20-12x}{8}\)
\(<=>6x-2-3x+6-8>20-12x\)
\(<=>15x>24\)
\(<=>x>\frac{24}{15}\)
2) a)|-2,5x|=x-12
TH1: x>=0 => |-2,5x|=2,5x
2,5x=x-12 <=> x=-8 (loại)
TH2: x<0 => |-2,5x|=-2,5x
-2,5x=x-12 <=> x= 3,42857... (loại)
Vậy không có giá trị x thoả mãn
b) |5x|-3x-2=0
TH1: 5x>=0 => x>=0 => |5x|=5x
5x-3x-2 = 0 <=> x=1 (chọn)
TH2: 5x<0 => x<0 => |5x|=-5x
-5x-3x-2=0 <=> x=-0,25 (chọn)
Vậy x=1 hoặc x=-0,25
c) |-2x|+x-5x-3=0
TH1: -2x>=0 <=> x<=0 <=> |-2x|=-2x
-2x+x-5x-3=0 <=> x=-3 (chọn)
TH2: -2x<0 <=> x>0 <=> |-2x|=2x
2x+x-5x-3=0 <=> x=-1,5 (loại)
Vậy x=-3
3) a) Ta có: -x2+4x-4=-(x-2)2<=0
=> -x2+4x-4-5<=-5
=> -x2+4x-9<=-5
b) Ta có: x2-2x+1=(x-1)2>=0
=> x2-2x+1+8>=8
=> x2-2x+9>=8
Bài 2 :
|-2/5x| = x - 12
2/5x = x - 12
2/5x - x = -12
=> -3/5x = -12
=> x =-12 : -3/5
=>x= 20
Bạn nhân A với -3 rồi chứng minh -3A>0, suy ra a<0. Mình chỉ gợi ý thôi, bạn nên tự suy luận
SAi đề rồi, sửa lại đi