K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
9 tháng 3 2024

Đề không đẩy đủ? Bạn muốn chứng minh gì nhỉ?

14 tháng 1 2019

\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)

\(A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{2}+...+\frac{1}{\left(n-1\right)}-\frac{1}{n}\)

\(A< 1-\frac{1}{n}< 1-\frac{1}{2}=\frac{1}{2}< \frac{2}{3}\)

                                         đpcm

Giả sử n=1

1x2x3x4=24

mà 24 ko là số chính phương

=>A = n(n+1)(n+2)(n+3) ko là số chính phương với mọi số m khác 0

mình là lớp 6 đó

24 tháng 4 2018

        \(5\left(2-3n\right)+42+3n\ge0\)

\(\Leftrightarrow\)\(10-15n+42+3n\ge0\)

\(\Leftrightarrow\)\(52-12n\ge0\)

\(\Leftrightarrow\)\(12n\le52\)

\(\Leftrightarrow\)\(n\le\frac{13}{3}\)

Vì  \(n\in N\) nên   \(n=\left\{0;1;2;3;4\right\}\)

1 tháng 5 2019

Ta có :

n3 + n + 2 = ( n3 + 1 ) + ( n + 1 )

= ( n + 1 ) ( n2 - n + 1 ) + ( n + 1 )

= ( n + 1 ) ( n2 - n + 2 )

Ta thấy n + 1 > 1 ; n2 - n + 2 > 1 nên n3 + n + 2 là hợp số

1 tháng 5 2019

 Do n là số tự nhiên khác 0 =) n = 2k hoặc 2k + 1 với k là stn

(+)  Nếu n = 2k =)  n^3 + n + 2 = (2k)^3 + 2k + 2 chia hết cho 2     (1)

(+)  Nếu n = 2k + 1 =)  n^3 + n + 2 = lẻ + lẻ +chẵn = chẵn chia hết cho 2     (2)

    Từ (1) và (2) ta có điều phải chứng minh

25 tháng 8 2017
 
 

Ta có :

A=n(n+1)(n+2)(n+3)

=n(n+3).(n+1)(n+2)

=(n2+3n)(n2+3n+2)

=(n2+3n)2+2(n2+3n)A>(n2+3n)2

=[(n2+3n)2+2(n2+3n)+1]1

=(n2+3n+1)21

Có :

(n2+3n+1)2>A>(n2+3n)2 nên A không phải số chính phương ( Vì A nằm giữa hai số chính phương )

 
 
25 tháng 8 2017

=n(n+3).(n+1)(n+2)

=(n2+3n)(n2+3n+2)

=(n2+3n)2+2(n2+3n)A>(n2+3n)2

=[(n2+3n)2+2(n2+3n)+1]1

=(n2+3n+1)21

Có :