Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử n=1
1x2x3x4=24
mà 24 ko là số chính phương
=>A = n(n+1)(n+2)(n+3) ko là số chính phương với mọi số m khác 0
A = [n(n+3)]. [(n+1).(n+2)] = (n2 + 3n). (n2 + 3n+ 2 ) = (n2 + 3n)2 + 2.(n2 + 3n)
Đặt a = n2 + 3n ( a > 0) =>A = a2 + 2a
Giả sử A là số chính phương => a2 + 2a = p2 ( p > 0) => (a + 1)2 = p2 + 1 => (a+1- p).(a+1+p) = 1
=> a + 1 +p = 1 => a + p = 0 Vô lí vò a;p > 0
Vậy A không là scp
Để chứng minh n2+n+1 không thể là số chính phương ta sẽ chứng minh n2+n+1 không chia hết cho 9
Giả sử n2+n+1 chia hết cho 9
<=> n2+n+1=9k (k thuộc N)
<=> n2+n+1-9k=0 (1)
\(\Delta=1^2-4\left(1-9k\right)=36k-3=3\left(12k-1\right)\)
Ta thấy \(\Delta⋮3\)và không chia hế cho hết cho 9 nên không là số chính phương => pt (1) trên không thể nghiệm nguyên
Vậy n2+n+1 không chia hết cho 9 hay n2+n+1 không là số chính phương
Giả sử ngược lại \(2^n-1\) là 1 số chính phương lẻ
Khi đó \(2^n-1=\left(2k+1\right)^2\) \(\left(k\inℕ^∗\right)\)
\(\Leftrightarrow2^n-1=4k^2+4k+1\)
\(\Leftrightarrow2^n=4k^2+4k+2\)
Nhận thấy VP chia hết cho 2 nhưng không chia hết cho 4
Mà n>1 nên 2n chia hết cho 4
=> vô lý => điều g/s sai
=> 2n - 1 không là 1 SCP
Ta có :
n3 + n + 2 = ( n3 + 1 ) + ( n + 1 )
= ( n + 1 ) ( n2 - n + 1 ) + ( n + 1 )
= ( n + 1 ) ( n2 - n + 2 )
Ta thấy n + 1 > 1 ; n2 - n + 2 > 1 nên n3 + n + 2 là hợp số
Do n là số tự nhiên khác 0 =) n = 2k hoặc 2k + 1 với k là stn
(+) Nếu n = 2k =) n^3 + n + 2 = (2k)^3 + 2k + 2 chia hết cho 2 (1)
(+) Nếu n = 2k + 1 =) n^3 + n + 2 = lẻ + lẻ +chẵn = chẵn chia hết cho 2 (2)
Từ (1) và (2) ta có điều phải chứng minh
-Ta c/m: Với mọi số tự nhiên n thì \(\left(n+2021\right)^2+2022< \left(n+2022\right)^2\)
\(\Leftrightarrow\left(n+2021\right)^2+2022-\left(n+2022\right)^2< 0\)
\(\Leftrightarrow\left(n+2021-n-2022\right)\left(n+2021+n+2022\right)+2022< 0\)
\(\Leftrightarrow-\left(2n+4043\right)+2022< 0\)
\(\Leftrightarrow-2n-4043+2022< 0\)
\(\Leftrightarrow-2n-2021< 0\) (đúng do n là số tự nhiên)
-Từ điều trên ta suy ra:
\(\left(n+2021\right)^2< \left(n+2021\right)^2+2022< \left(n+2022\right)^2\)
-Vậy với mọi số tự nhiên n thì \(\left(n+2021\right)^2+2022\) không là số chính phương.
\(\left(3^{n+1}-2.2^n\right)\left(3.3^n+2^{n+1}\right).3^{2n+2}+\left(8.2^{n-2}.3^{n+1}\right)^2\)
\(=\left(3^{n+1}-2^{n+1}\right)\left(3^{n+1}+2^{n+1}\right).3^{2n+2}+\left(2^{n+1}.3^{n+1}\right)^2\)
\(=\left(3^{2n+2}-2^{2n+2}\right).3^{2n+2}+2^{2n+2}.3^{2n+2}\)
\(=3^{2\left(2n+2\right)}-2^{2n+2}.3^{2n+2}+2^{2n+2}.3^{2n+2}\)
\(=3^{2\left(2n+2\right)}=\left(3^{2n+2}\right)^2\).
Ta thấy \(\left(3^{2n+2}\right)^2\)luôn là 1 số chính phương với mọi n\(\in\)N
Nên ta có ĐPCM.
Ta có :
A=n(n+1)(n+2)(n+3)
=n(n+3).(n+1)(n+2)
=(n2+3n)(n2+3n+2)
=(n2+3n)2+2(n2+3n)⇒A>(n2+3n)2
=[(n2+3n)2+2(n2+3n)+1]−1
=(n2+3n+1)2−1
Có :
(n2+3n+1)2>A>(n2+3n)2 nên A không phải số chính phương ( Vì A nằm giữa hai số chính phương )
=n(n+3).(n+1)(n+2)
=(n2+3n)(n2+3n+2)
=(n2+3n)2+2(n2+3n)⇒A>(n2+3n)2
=[(n2+3n)2+2(n2+3n)+1]−1
=(n2+3n+1)2−1
Có :