\(n\in Z\) và n>1  ta có A = \(n^4+4^n\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2018

Nếu nn chẵn thì cái tổng chia hết cho 2

Nếu nn lẻ thì

Phân tích nhân tử

Ta có n4+4n=(n2)2+(2n)2+2.n2.2n−2.n2.2n=(n2+2n)2−n2.2n+1=(n2+2n−n.2n+12)(n2+2n+n.2n+12)n4+4n=(n2)2+(2n)2+2.n2.2n−2.n2.2n=(n2+2n)2−n2.2n+1=(n2+2n−n.2n+12)(n2+2n+n.2n+12)

Ta chỉ cần chứng minh cả 2 thừa số đều lớn hơn 1 là được

Tức là ta chứng minh n2+2n−n.2n+12≥1n2+2n−n.2n+12≥1

Tương đương với n2+2n+1−2n.2n+12+n2≥2n2+2n+1−2n.2n+12+n2≥2 ( nhân 2 cho 2 vế )

BĐT <=>(n−2n+12)2+n2≥2<=>(n−2n+12)2+n2≥2 đúng với nn lẻ và n≥3n≥3 

Vậy, ta có điều phải chứng min

15 tháng 2 2017

Với n chẵn thì:

\(\left(n^4+4^n\right)⋮2\)\(\left(n^4+4^n\right)>2\) nên là hợp số

Với n lẻ thì:

\(4^n\equiv-1\left(mod5\right)\)

\(n^4\equiv1\left(mod5\right)\)

\(\Rightarrow\left(n^4+4^n\right)\equiv0\left(mod5\right)\)

\(\left(n^4+4^n\right)>5\) nên \(\left(n^4+4^n\right)\) là hợp số

Vậy với mọi n tự nhiên và \(n>1\) thì A là hợp số

8 tháng 1 2017

\(A=n^2\left(n^4-n^2+2n+2\right)=n^2\left(n^2+2n+1\right)\left(n^2-2n+2\right)\)

\(A=n^2.\left(n+1\right)^2.\left[\left(n-1\right)^2+1\right]\) có \(\left(n-1\right)^2+1\) chỉ là số CP phương khi n=1

Vậy với n>1 A không thể Cp

27 tháng 8 2019

Câu hỏi của nguyễn đình thành - Toán lớp 9 - Học toán với OnlineMath

27 tháng 8 2019

Anh tham khảo tại đây:

Câu hỏi của Thanh Bách - Toán lớp 8 - Học toán với OnlineMath

14 tháng 8 2019

\(b,n^2\left(n^4-1\right)\)

\(=n^2\left(n^2+1\right)\left(n^2-1\right)\)

Ta có:\(n^2-1;n^2;n^2+1\) là 3 số nghuyên liên tiếp

\(\Rightarrow n^2\left(n^2+1\right)\left(n^2-1\right)⋮60\)

\(\Rightarrowđpcm\)

=> 

AH
Akai Haruma
Giáo viên
14 tháng 8 2019

Lời giải:

Nếu $n$ chẵn, hiển nhiên $A=n^4+4^n\vdots 2$ và $A>2$ nên $A$ là hợp số.

Nếu $n$ lẻ:
Ta có:

\(A=n^4+4^n=(n^2)^2+(2^n)^2=(n^2)^2+(2^n)^2+2.n^2.2^n-2^{n+1}.n^2\)

\(=(n^2+2^n)^2-(2^{\frac{n+1}{2}}.n)^2=(n^2+2^n-2^{\frac{n+1}{2}}.n)(n^2+2^n+2^{\frac{n+1}{2}}.n)\)

Với $n$ lẻ thì \(n^2+2^n-2^{\frac{n+1}{2}}.n;n^2+2^n+2^{\frac{n+1}{2}}.n\) đều là những số nguyên.

\(n^2+2^n-2^{\frac{n+1}{2}}.n=(n-2^{\frac{n-1}{2}})^2+2^{n-1}\geq 2\) với mọi $n$ tự nhiên lẻ.

\(n^2+2^n+2^{\frac{n+1}{2}}.n>2\) với mọi $n$ tự nhiên lẻ. Do đó $A$ là hợp số

Từ 2 TH trên suy ra $A$ là hợp số với mọi số tự nhiên $n$.

19 tháng 11 2016

câu 2

Ta có:                                                                                                                                                                                     P(0)=d =>d chia hết cho 5  (1)                                                                                                                                                P(1)=a+b+c+d =>a+b+c chia hết cho 5  (2)                                                                                                                               P(-1)=-a+b-c+d chia hết cho 5                                                                                                                                              Cộng (1) với (2) ta có: 2b+2d chia hết cho 5                                                                                                                               Mà d chia hết cho 5 =>2d chia hết cho 5                                                                                                                                  =>2b chia hết cho 5 =>b chia hết cho 5                                                                                                                          P(2)=8a+4b+2c+d chia hết cho 5                                                                                                                                       =>8a+2c chia hết cho 5 ( vì 4b+d chia hết cho 5)                                                                                                                      =>6a+2a+2c chia hết cho 5                                                                                                                                         =>6a+2(a+c) chia hết cho 5 Mà a+c chia hết cho 5 (vì a+b+c chia hết cho 5, b chia hết cho 5)                                                          =>6a chia hết cho 5                                                                                                                                                                =>a chia hết cho 5 =>c chia hết cho 5                                                                                                                                                                  Vậy a,b,c chia hết cho 5  cho mình 1tk nhé

19 tháng 11 2016

1b)

Đặt 2014+n2=m2(m∈Z∈Z,m>n)

<=>m2-n2=2014<=>(m+n)(m-n)=2014

Nhận thấy:m và n phải cùng chẵn hoặc cùng lẻ 

Suy ra m+n và m-n đều chẵn,m+n>m-n

Mà 2014=2.19.53=>m+n và m-n không cùng chẵn

=>không có giá trị nào thoả mãn

tk mình nhé