\(n\in N\) và n>1

Chứng minh: \(A=n^4+4^n\) l...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2017

Với n chẵn thì:

\(\left(n^4+4^n\right)⋮2\)\(\left(n^4+4^n\right)>2\) nên là hợp số

Với n lẻ thì:

\(4^n\equiv-1\left(mod5\right)\)

\(n^4\equiv1\left(mod5\right)\)

\(\Rightarrow\left(n^4+4^n\right)\equiv0\left(mod5\right)\)

\(\left(n^4+4^n\right)>5\) nên \(\left(n^4+4^n\right)\) là hợp số

Vậy với mọi n tự nhiên và \(n>1\) thì A là hợp số

6 tháng 11 2018

Nếu nn chẵn thì cái tổng chia hết cho 2

Nếu nn lẻ thì

Phân tích nhân tử

Ta có n4+4n=(n2)2+(2n)2+2.n2.2n−2.n2.2n=(n2+2n)2−n2.2n+1=(n2+2n−n.2n+12)(n2+2n+n.2n+12)n4+4n=(n2)2+(2n)2+2.n2.2n−2.n2.2n=(n2+2n)2−n2.2n+1=(n2+2n−n.2n+12)(n2+2n+n.2n+12)

Ta chỉ cần chứng minh cả 2 thừa số đều lớn hơn 1 là được

Tức là ta chứng minh n2+2n−n.2n+12≥1n2+2n−n.2n+12≥1

Tương đương với n2+2n+1−2n.2n+12+n2≥2n2+2n+1−2n.2n+12+n2≥2 ( nhân 2 cho 2 vế )

BĐT <=>(n−2n+12)2+n2≥2<=>(n−2n+12)2+n2≥2 đúng với nn lẻ và n≥3n≥3 

Vậy, ta có điều phải chứng min

27 tháng 8 2019

Câu hỏi của nguyễn đình thành - Toán lớp 9 - Học toán với OnlineMath

27 tháng 8 2019

Anh tham khảo tại đây:

Câu hỏi của Thanh Bách - Toán lớp 8 - Học toán với OnlineMath

2 tháng 2 2020

Với n chẵn thì : 

\(\left(n^4+4^n\right)⋮2\)mà \(\left(n^4+4^n\right)>2\)nên là hợp số 

Với n lẻ thì :
\(4^n=-1\left(mod5\right)\)

\(n^4=1\left(mod5\right)\)

\(\Rightarrow\left(n^4+4^n\right)=0\left(mod5\right)\)

Mà \(\left(n^4+4^n\right)>5\)nên \(\left(n^4+4^n\right)\)là hợp số

Vậy với mọi n tự nhiên và \(n>1\)thì A là hớp số 

Chúc bạn học tốt !!!

2 tháng 2 2020

n^4 là số chẵn 4^n là số chẵn cộng lại thì = số chẵn mà số chẵn chia hết cho 2 cho nên A là hợp số (Đpcm)

6 tháng 11 2018

Nếu nn chẵn thì cái tổng chia hết cho 2

Nếu nn lẻ thì

Phân tích nhân tử

Ta có n4+4n=(n2)2+(2n)2+2.n2.2n−2.n2.2n=(n2+2n)2−n2.2n+1=(n2+2n−n.2n+12)(n2+2n+n.2n+12)n4+4n=(n2)2+(2n)2+2.n2.2n−2.n2.2n=(n2+2n)2−n2.2n+1=(n2+2n−n.2n+12)(n2+2n+n.2n+12)

Ta chỉ cần chứng minh cả 2 thừa số đều lớn hơn 1 là được

Tức là ta chứng minh n2+2n−n.2n+12≥1n2+2n−n.2n+12≥1

Tương đương với n2+2n+1−2n.2n+12+n2≥2n2+2n+1−2n.2n+12+n2≥2 ( nhân 2 cho 2 vế )

BĐT <=>(n−2n+12)2+n2≥2<=>(n−2n+12)2+n2≥2 đúng với nn lẻ và n≥3n≥3 

Vậy, ta có điều phải chứng minh

8 tháng 1 2017

\(A=n^2\left(n^4-n^2+2n+2\right)=n^2\left(n^2+2n+1\right)\left(n^2-2n+2\right)\)

\(A=n^2.\left(n+1\right)^2.\left[\left(n-1\right)^2+1\right]\) có \(\left(n-1\right)^2+1\) chỉ là số CP phương khi n=1

Vậy với n>1 A không thể Cp

AH
Akai Haruma
Giáo viên
14 tháng 8 2019

Lời giải:

Nếu $n$ chẵn, hiển nhiên $A=n^4+4^n\vdots 2$ và $A>2$ nên $A$ là hợp số.

Nếu $n$ lẻ:
Ta có:

\(A=n^4+4^n=(n^2)^2+(2^n)^2=(n^2)^2+(2^n)^2+2.n^2.2^n-2^{n+1}.n^2\)

\(=(n^2+2^n)^2-(2^{\frac{n+1}{2}}.n)^2=(n^2+2^n-2^{\frac{n+1}{2}}.n)(n^2+2^n+2^{\frac{n+1}{2}}.n)\)

Với $n$ lẻ thì \(n^2+2^n-2^{\frac{n+1}{2}}.n;n^2+2^n+2^{\frac{n+1}{2}}.n\) đều là những số nguyên.

\(n^2+2^n-2^{\frac{n+1}{2}}.n=(n-2^{\frac{n-1}{2}})^2+2^{n-1}\geq 2\) với mọi $n$ tự nhiên lẻ.

\(n^2+2^n+2^{\frac{n+1}{2}}.n>2\) với mọi $n$ tự nhiên lẻ. Do đó $A$ là hợp số

Từ 2 TH trên suy ra $A$ là hợp số với mọi số tự nhiên $n$.