Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C1
Câu trả lời hay nhất: Bài này có nhiều cách giải khác nhau:
C1: Nhận vào: 5x^2-16x+3=0, giải phương trình bậc 2 => x=3, x=1/5
C2: Đặt nhân tử chung:
5x(x-3)-(x-3)=0 <=> (x-3)(5x-1)=0 <=> x-3=0 hoặc 5x-1=0
<=> x=3, x=1/5
C2
Ta có:
\(A=n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
Do \(n\left(n-1\right)\left(n+1\right)\) là tích của 3 số nguyên liên tiếp (n\(\in Z\))
nên \(A⋮2.3=6\) (1)Do (2,3)=1
Ta cũng có:
\(A=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)
Do \(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)⋮5\)
\(\Rightarrow A⋮5\) (2)
Từ (1); (2) \(\Rightarrow A⋮6.5=30\) Do (6,5)=1
\(A=n^5-n=n\left(n^4-1\right)\)
\(=n\left(n^2+1\right)\left(n^2-1\right)\)
\(=n\left(n^2+1\right)\left(n-1\right)\left(n+1\right)\)
\(=n\left(n^2+5-4\right)\left(n-1\right)\left(n+1\right)⋮6\)(tích 3 số liên tiếp)
\(=n\left(n^2-4\right)\left(n-1\right)\left(n+1\right)+5n\left(n-1\right)\left(n+1\right)\)
\(=n\left(n-2\right)\left(n+2\right)\left(n-1\right)\left(n+1\right)+5n\left(n-1\right)\left(n+1\right)⋮5\left(đpcm\right)\)(tích 5 số liên tiếp và 1 tích có thừa số 5)
\(\Rightarrow A⋮30\)
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
Có \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4+5\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)+5\text{a}\left(a-1\right)\left(a+1\right)\)
Có a(a-1)(a+1)(a-2)(a+2) là 5 số tự nhiên liên tiếp => có 1 số chia hết cho 5, 1 số chia hết cho 3 và 1 số chia hết cho 2 => chia hết cho 30
a(a-1)(a+1) là 3 số tự nhiên liên tiếp => có 1 số chia hết cho 2 và 1 số chia hết cho 3 => 5a(a-1)(a+1) chia hết cho 30
vậy tổng của chúng chia hết cho 30
=> đpcm
a, \(\left(5n+2\right)^2-4=\left(5n+2-2\right)\left(5n+2+2\right)=5n\left(5n+4\right)⋮5\)
b, \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)
Vì (n-1)n(n+1) là tích 3 số nguyên liên tiếp
=>(n-1)n(n+1) chia hết cho 6 hay n^3-n chia hết cho 6
c, \(a+b+c=0\Rightarrow a+b=-c\)
\(\Rightarrow\left(a+b\right)^3=\left(-c\right)^3\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\Rightarrow a^3+b^3-3abc=-c^3\)
=>a^3+b^3+c^3=3abc
an+5-an+1 = an.a5-an.a = an.a(a4-1) = an.a.(a2 - 1).(a2 + 1)= an.a.(a-1)(a+1).(a2 + 1)
Do a.(a-1)(a+1) chia hết cho 2;3 => an.a.(a-1)(a+1).(a2 + 1) chia hết cho 6 => an+5-an+1 chia hết cho 6 (1)
an+5-an+1 = an(a5-a) = an(a5-1)
=> Do (a5-1) chia hết cho 5 ( định lí fermat nhỏ) => an(a5-1) chia hết cho 5 => an+5-an+1 chia hết cho 5
Từ (1) và (2) => an+5-an+1 là B(5;6)
Mà BCNN(5;6) = 30 => (an+5-an+1 ) chia hết cho 30
Sai đề r nếu a=2 và n=1 thì an+5-an+4=26-25=32 ko chia hết cho 30