\(\frac{sin530^{^0}}{1+sin640^0}\)= 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2017

Ta có: 

y02 + ay0 + b = 0

\(\Leftrightarrow\)y04 = (ay0 + b)2

\(\le\)(a2 + b2)(y02 + 1)

\(\Rightarrow\)y04 - 1 < (a2 + b2)(y02 + 1)

\(\Rightarrow\)y02 - 1 < a2 + b2

\(\Rightarrow\)y02 < 1 + a2 + b2

1 tháng 10 2017

3/ Dễ thấy \(0\le x,y,z\le1\)

Ta có:

x2 + y2 + z2 = x3 + y3 + z3

\(\Leftrightarrow\)x2(1 - x) + y2(1 - y) + z2(1 - z) = 0

Dấu =  xảy ra khi (x, y, z) = (0,0,1) và các hoán vị của nó

6 tháng 8 2018

\(a+\frac{1}{a}=\frac{a^2+1}{a}\ge2\)

\(\Leftrightarrow a^2+1\ge2a\Leftrightarrow\left(a-1\right)^2\ge0\)(luôn đúng với mọi a)

\(a^2+2\ge2\sqrt{a^2+1}\Leftrightarrow\left(\sqrt{a^2+1}-1\right)^2\ge0\)

27 tháng 7 2017

Câu hỏi của Mẫn Đan - Toán lớp 9 - Học toán với OnlineMath

11 tháng 11 2018

Câu 1

t8-t2\(\frac{1}{2}\)=t8 - t4\(\frac{1}{4}\) + t4-t2+\(\frac{1}{4}\) = (t4 -\(\frac{1}{2}\) )2 + (t2-\(\frac{1}{2}\))2 luôn lớn hơn không do t4-1/2 khác t2-1/2 nên cả hai không thể đồng thời bằng 0

Câu 2:

\(\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c}=\frac{6bc+3ac+2ab}{6abc}=0\)

=> 6bc+3ac+2ab=0

Có a+2b+3c=1=> (a+2b+3c)2=0=>a2+4b2+9c2+2(6bc+3ac+2ab)=1

=> a2+4b2+9c2 =1

30 tháng 7 2017

Có :

\(\frac{a^2+5}{\sqrt{a^2+4}}\ge2\)     (sửa lại đề)

\(\Rightarrow a^2+5\ge2.\sqrt{a^2+4}\)

\(\Rightarrow\left(a^2+5\right)^2\ge4.\left(a^2+4\right)\)

\(\Rightarrow a^4+10a^2+25\ge4.a^2+16\)

\(\Rightarrow a^4+6a^2+9\ge0\)

\(\Rightarrow\left(a^2+3\right)^2\ge0\)  (Cái này đúng)

=> BĐT cần chứng minh là đúng .

30 tháng 7 2017

đề sai rồi, giả sử a=0 thì \(\frac{a^2+5}{\sqrt{a^2}+4}=\frac{5}{4}=1,25< 2\) 

27 tháng 7 2017

Ta có:

\(\frac{sin^4x}{m}+\frac{cos^4x}{n}\ge\frac{\left(sin^2x+cos^2x\right)^2}{m+n}=\frac{1}{m+n}\)

Dấu = xảy ra khi \(\frac{sin^2x}{m}=\frac{cos^2x}{n}\)

Thế vào điều kiện đề bài ta có:

\(\frac{sin^4x}{m}+\frac{cos^4x}{n}=\frac{1}{m+n}\)

\(\Leftrightarrow\frac{sin^2x}{m}.\left(sin^2x+cos^2x\right)=\frac{1}{m+n}\)

\(\Leftrightarrow\frac{sin^2x}{m}=\frac{1}{m+n}\left(1\right)\)

Ta cần chứng minh

\(\frac{sin^{2008}x}{m^{1003}}+\frac{cos^{2008}x}{n^{1003}}=\frac{1}{\left(m+n\right)^{1003}}\)

\(\Leftrightarrow\frac{sin^{2006}}{m^{1003}}.\left(sin^2x+cos^2x\right)=\frac{1}{\left(m+n\right)^{1003}}\)

\(\Leftrightarrow\left(\frac{sin^2}{m}\right)^{1003}=\frac{1}{\left(m+n\right)^{1003}}\left(2\right)\)

Từ (1) và (2) ta có điều phải chứng minh là đúng.