Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1990^2}\) < \(\frac{3}{4}\)
sửa đề câu 1 :
\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}\)
\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{100-1}{100!}\)
\(=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{99!}-\frac{1}{100!}\)
\(=1-\frac{1}{100!}< 1\)
sửa đề câu 2
\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)
\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)
\(=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)
\(=\left(1+1+\frac{1}{2!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)
\(=2-\frac{1}{99!}-\frac{1}{100!}< 2\)
Bài 1:
Ta có:
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)
\(=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)
\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{81}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
Mà \(\frac{99}{100}< 1\)
\(\Rightarrow\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}< 1\left(đpcm\right)\)
Giúp mình nha. Bài cuối cùng của đề toán dài 36 bài của mình đó
\(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}< 1\)
Nên từ đây => \(A< 1\) (ĐPCM)
\(D=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{2018}{4^{2018}}+\frac{2019}{4^{2019}}\)
\(\Rightarrow4D=1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2018}{4^{2017}}+\frac{2019}{4^{2018}}\)
\(\Rightarrow4D-D=1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2018}{4^{2017}}+\frac{2019}{4^{2018}}\)
\(-\frac{1}{4}-\frac{2}{4^2}-\frac{3}{4^3}-\frac{4}{4^4}-...-\frac{2018}{4^{2018}}-\frac{2019}{4^{2019}}\)
\(\Rightarrow3D=1+\left(\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2018}}\right)-\frac{2019}{4^{2019}}\)
Đặt \(M=\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+\frac{1}{4^4}+...+\frac{1}{4^{2018}}\)
\(\Rightarrow4M=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2017}}\)
\(\Rightarrow4M-M=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2017}}\)
\(-\frac{1}{4}-\frac{1}{4^2}-\frac{1}{4^3}-\frac{1}{4^4}-...-\frac{1}{4^{2018}}\)
\(\Rightarrow3M=1-\frac{1}{4^{2018}}\)
\(\Rightarrow M=\frac{1}{3}-\frac{1}{3.4^{2018}}\)
\(\Rightarrow3D=1+\frac{1}{3}-\frac{1}{3.4^{2018}}-\frac{2019}{4^{2019}}\)
\(\Rightarrow3D=\frac{4}{3}-\frac{1}{3.4^{2018}}-\frac{2019}{4^{2019}}< \frac{4}{3}\)
\(\Rightarrow D< \frac{4}{9}=\frac{40}{90}< \frac{45}{90}=\frac{1}{2}\left(đpcm\right)\)
Ta có : \(VT=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{100-1}{100!}\)
\(=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{99!}-\frac{1}{100!}\)
\(=1-\frac{1}{100!}< 1\)
\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\frac{4}{5!}+...+\frac{99}{100!}=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+\frac{5-1}{5!}+...+\frac{100-1}{100!}\)
\(=\frac{2}{1.2}-\frac{1}{2!}+\frac{3}{1.2.3}-\frac{1}{3!}+\frac{4}{1.2.3.4}-\frac{1}{4!}+\frac{5}{1.2.3.4.5}-\frac{1}{5!}+...+\frac{100}{1.2...99.100}-\frac{1}{100!}\)
\(=\frac{1}{1}-\frac{1}{2!}+\frac{1}{1.2}-\frac{1}{3!}+\frac{1}{1.2.3}-\frac{1}{4!}+\frac{1}{1.2.3.4}-\frac{1}{5!}+...+\frac{1}{1.2...99}-\frac{1}{100!}\)
\(=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+\frac{1}{4!}-\frac{1}{5!}+...+\frac{1}{99!}-\frac{1}{100!}\)
\(=1-\frac{1}{100!}< 1\)
Vì \(\frac{1}{2^2}< \frac{3}{4}\)
\(\frac{1}{3^2}< \frac{3}{4}\)
...
\(\frac{1}{1990^2}< \frac{3}{4}\)
=> Tổng đó bé hơn \(\frac{3}{4}\)
\(\frac{1}{2^2}< \frac{1}{2}\left(1-\frac{1}{3}\right)\)
\(\frac{1}{1990^2}< \frac{1}{2}\left(\frac{1}{1989}-\frac{1}{1991}\right)\)
\(VP< \frac{1}{2}\left(1-\frac{1}{1991}\right)=\frac{1990}{2.1991}=\frac{995}{1991}< \frac{3}{4}\)