\(\frac{1}{3}\)+\(\frac{1}{3^2}\)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2017

B=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+.....+\frac{1}{3^{2012}}+\frac{1}{3^{2013}}\)

3B=\(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+.....+\frac{1}{3^{2011}}+\frac{1}{3^{2012}}\)

3B-B=\(\left(1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{2011}}+\frac{1}{3^{2012}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{2012}}+\frac{1}{3^{2013}}\right)\)

2B=\(1-\frac{1}{3^{2013}}\)

\(\Rightarrow2B< 1\)

\(\Rightarrow B< \frac{1}{2}\)

10 tháng 3 2017

\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2013}}\)

\(3B=\frac{1}{3}.3+\frac{1}{3^2}.3+\frac{1}{3^3}.3+...+\frac{1}{3^{2013}}.3\)

\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2012}}\)

\(3B-B=2B=\)

3B=    \(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2012}}\)

B=              \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2012}}+\frac{1}{3^{2013}}\)

2B=    1  +     0   +    0   +    0    +.......+   0           -   \(\frac{1}{3^{2013}}\)    

\(\Rightarrow2B=1-\frac{1}{3^{2013}}\)

\(\Rightarrow B=\frac{1}{2}-\frac{1}{2.3^{2013}}\)

\(\Rightarrow B< \frac{1}{2}\)

Vậy \(B< \frac{1}{2}\).

15 tháng 2 2017

\(\frac{B}{A}=\frac{\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{1}{2012}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}\)

\(=\frac{\left(\frac{2011}{2}+1\right)+\left(\frac{2010}{3}+1\right)+...+\left(\frac{1}{2012}+1\right)+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}\)

\(=\frac{\frac{2013}{2}+\frac{2013}{3}+\frac{2013}{4}+....+\frac{2013}{2012}+\frac{2013}{2013}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2013}}\)

\(=\frac{2013\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2013}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}=2013\)

31 tháng 12 2016

1 nha bạn

Chúc các bạn học giỏi

NHa

31 tháng 12 2016

1 đó bạn

19 tháng 12 2017

Ta có :

M = \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

3M = \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

3M - M = ( \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)) - ( \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\))

2M = \(1-\frac{1}{3^{99}}< 1\)

\(\Rightarrow M=\frac{1-\frac{1}{3^{99}}}{2}< \frac{1}{2}\)

19 tháng 12 2017

3M=1+1/3+1/3^2+....+1/3^98

2M=3M-M=(1+1/3+1/3^2+....+1/3^98)-(1/3+1/3^2+....+1/3^99) = 1-1/3^99 < 1

=> M < 1/2

=> ĐPCM

k mk nha

12 tháng 3 2017

Ta có Tổng quát  \(\frac{1+2+3+...+n}{\left(n+1\right)}=\frac{\frac{\left(n+1\right)n}{2}}{n+1}\)

                                                                = \(\frac{n}{2}\) 

=> A = \(\frac{1}{2}+\frac{2}{2}+\frac{3}{2}+...+\frac{2012}{2}\)

        = \(\frac{1+2+3+..+2012}{2}=\frac{2025078}{2}=1012539\)  

29 tháng 10 2017

Đặt A =\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{2008}{3^{2008}}\)

Suy ra 3A = \(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{2008}{3^{2007}}\)=> 2A = 3A - A = \(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{2008}{3^{2007}}-\frac{1}{3}-\frac{2}{3^2}-\frac{3}{3^3}-...-\frac{2008}{3^{3008}}\)\(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2007}}-\frac{2008}{3^{2008}}\)

\(\frac{3}{2}-\frac{1}{2.3^{2007}}\)Suy ra A = \(\frac{3}{4}-\frac{1}{8.3^{2007}}\)<\(\frac{3}{4}\)(ĐPCM)