K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2017

Ta có (a+2)3-(a+6)(a2+12)+64=a3+6a2+12a+8-a3-12a-6a2-72+64=0(đpcm)

7 tháng 9 2017

\(\left(a+2^3\right)-\left(a+6\right).\left(a^2+12\right)+64=0\)

\(\Leftrightarrow\left(a+8\right)-\left(a^3+6a^2+12a+72\right)=-64\)

\(\Leftrightarrow\left(a^3+6a^2+12a+72\right)-\left(a+8\right)=64\)

\(\Leftrightarrow a^3+6a^2+11a+64=64\)

\(\Leftrightarrow a^3+6a^2+11a^2=0\)

\(\Leftrightarrow a.\left(a^2+6a+11\right)=0\)

\(\Leftrightarrow a.\left[\left(a^2+2.a.3+9\right)+2\right]=0\)

\(\Leftrightarrow a.\left[\left(a+3\right)^2+2\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=0\\\left(a+3\right)^2+2=0\left(\text{Vô lí}\right)\end{matrix}\right.\)

\(\Rightarrow a=0\)

\(\Rightarrow\) Đpcm.

9 tháng 8 2016

\(\Leftrightarrow\left(a+8\right)-\left(a^3+6a^2+12a+72\right)=-64\Leftrightarrow\left(a^3+6a^2+12a+72\right)-\left(a+8\right)=64\)

\(\Leftrightarrow a^3+6a^2+11a+64=64\Leftrightarrow a^3+6a^2+11a=0\Leftrightarrow a\left(a^2+6a+11\right)=0\)

\(\Leftrightarrow a\left[\left(a^2+2.a.3+9\right)+2\right]=0\Leftrightarrow a\left[\left(a+3\right)^2+2\right]=0\Leftrightarrow\orbr{\begin{cases}a=0\\\left(a+3\right)^2+2=0\left(V\text{ô}l\text{í}\right)\end{cases}\Rightarrow a=0}\)

9 tháng 8 2016

hình như sai đề hay sao ý, có nghiệm mà =)))))

6 tháng 9 2017

1/ x^3+6x^2+12x+8=0

(x+2)^3=0

x+2=0

x=-2

Vậy x=-2

6 tháng 11 2019

a) \(A=x^2-2x+2=\left(x-1\right)^2+1>0\forall x\inℝ\)

b) \(x-x^2-3=-\left(x^2-x+3\right)\)

\(=-\left(x^2-x+\frac{1}{4}+\frac{11}{4}\right)\)

\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]\)

\(=-\left[\left(x-\frac{1}{2}\right)^2\right]-\frac{11}{4}\le\frac{-11}{4}< 0\forall x\inℝ\)

24 tháng 8 2024

x²-2x+2=(x²-2x+1)+1=( x-1)²+1

Mà (x-1)²≥0 với mọi x

=> (x-1)²+1>0 với mọi x

=> x²-2x+2>0 với mọi x

5 tháng 11 2017

khó quá

27 tháng 3 2018

dễ mà cô nương

\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(\left(a^2+ab+b^2\right)=\left\{\left(a+b\right)^2-ab\right\}\)

\(a^3-b^3=\left(a-b\right)\left(25-6\right)=19\left(a-b\right)\)

ta có 

\(a=-5-b\)

suy ra

\(a^3-b^3=19\left(-5-2b\right)\) " xong "

2, trên mạng đầy

3, dytt mọe mày ngu ab=6 thì cmm nó phải chia hết cho 6 chứ :)

4 . \(x^2-\frac{2.1}{2}x+\frac{1}{4}+\frac{1}{3}-\frac{1}{4}>0\) tự làm dcmm

5. trên mạng đầy

6 , trên mang jđầy 

29 tháng 6 2015

1) \(x^3-x^2+2x=x\left(x^2-x+2\right)\)bạn xem lại đề xem có sai không nha. chỗ này sau khi thu gọn và cho x ra ngoài thì phải có dạng: \(x\left(x^2-3x+2\right)=x\left(x^2-2x-x+2\right)=x\left(x-1\right)\left(x-2\right)\)hoặc \(x\left(x^2+3x+2\right)=x\left(x^2+2x+x+2\right)=x\left(x+1\right)\left(x+2\right)\)

nó là tích của 3 số tự nhiên liên tiếp => trong đó phỉa có 1 số chia hết cho 2, có một số chia hết cho 3. vì 3,2 ngtố cùng nhau =>tích của 3 số ltiếp sẽ chia hết cho 3.2=6 => chia hết cho 6 với mọi x

2) \(a^2-\left(b^2-2bc+c^2\right)=a^2-\left(b-c\right)^2=\left(a+b-c\right)\left(a-b+c\right)\)

mình làm đến đây thì k biết giải thích sao nữa :( thôi cứ tick đúng cho mình nha

29 tháng 6 2015

Câu 1 Sai đề. Chỉ cần thay x = 1,2,3 ta thấy ngay sai 

Câu 2 sai đề. chứng minh như sau;

Thay a,b,c là số dài 3 cạnh của 1 tam giác đều có cạnh 0,5 (nhỏ hơn 1 là đủ)

\(a^2-\left(b^2-2bc+c^2\right)>c\)\(\Leftrightarrow a^2-\left(b-c\right)^2>c\) 

Với a = b = c = 0,5 thì điều trên tương đương \(0,5^2-\left(0,5-0,5\right)^2>0,5\)

\(\Leftrightarrow0,25>0,5\) => vô lí

27 tháng 8 2020

\(A=x^2+2y^2-2xy+4x-6y+6\)

\(=\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)+\left(y^2-6y+9\right)-7\)

\(=\left(x-y\right)^2+\left(x+2\right)^2+\left(y-3\right)^2-7\)

Đề hình như có gì đó không đúng

27 tháng 8 2020

Ta có: \(A=x^2+2y^2-2xy+4x-6y+6=\left(x^2-2xy+y^2\right)\)          \(+4\left(x-y\right)+4+y^2-2y+1+1=\left[\left(x-y\right)^2+4\left(x-y\right)+4\right]\)\(+\left(y-1\right)^2+1=\left(x-y+2\right)^2+\left(y-1\right)^2+1\)

Ta có: \(\left(x-y+2\right)^2\ge0\forall x,y\)\(\left(y-1\right)^2\ge0\forall y\)nên \(\left(x-y+2\right)^2+\left(y-1\right)^2+1>0\forall x,y\)

Vậy \(A=x^2+2y^2-2xy+4x-6y+6>0\forall x,y\)(đpcm)