K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2020

\(A=x^2+2y^2-2xy+4x-6y+6\)

\(=\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)+\left(y^2-6y+9\right)-7\)

\(=\left(x-y\right)^2+\left(x+2\right)^2+\left(y-3\right)^2-7\)

Đề hình như có gì đó không đúng

27 tháng 8 2020

Ta có: \(A=x^2+2y^2-2xy+4x-6y+6=\left(x^2-2xy+y^2\right)\)          \(+4\left(x-y\right)+4+y^2-2y+1+1=\left[\left(x-y\right)^2+4\left(x-y\right)+4\right]\)\(+\left(y-1\right)^2+1=\left(x-y+2\right)^2+\left(y-1\right)^2+1\)

Ta có: \(\left(x-y+2\right)^2\ge0\forall x,y\)\(\left(y-1\right)^2\ge0\forall y\)nên \(\left(x-y+2\right)^2+\left(y-1\right)^2+1>0\forall x,y\)

Vậy \(A=x^2+2y^2-2xy+4x-6y+6>0\forall x,y\)(đpcm)

a: \(\dfrac{a}{b}+\dfrac{b}{a}>=2\cdot\sqrt{\dfrac{a}{b}\cdot\dfrac{b}{a}}=2\)

b: a<b

=>-2a>-2b

=>-2a-3>-2b-3

c: =x^2+2xy+y^2+y^2+6y+9

=(x+y)^2+(y+3)^2>=0 với mọi x,y

d: a+3>b+3

=>a>b

=>-5a<-5b

=>-5a+1<-5b+1

5 tháng 5 2021

Là được (x-y-5)^2 + y^2 lớn hơn hoặc bằng 0 

Dấu bằng xảy ra khi x = 5 và y=0

Do đó x^2 - 2xy + 2y^2 - 10x + 10y + 25 lớn hơn hoặc bằng 0

Chúc bạn học tốt nhớ theo dõi mk vs nhé. Mk cảm ơn

AH
Akai Haruma
Giáo viên
13 tháng 12 2023

A.

$a^2+4b^2+9c^2=2ab+6bc+3ac$

$\Leftrightarrow a^2+4b^2+9c^2-2ab-6bc-3ac=0$

$\Leftrightarrow 2a^2+8b^2+18c^2-4ab-12bc-6ac=0$

$\Leftrightarrow (a^2+4b^2-4ab)+(a^2+9c^2-6ac)+(4b^2+9c^2-12bc)=0$

$\Leftrightarrow (a-2b)^2+(a-3c)^2+(2b-3c)^2=0$

$\Rightarrow a-2b=a-3c=2b-3c=0$

$\Rightarrow A=(0+1)^{2022}+(0-1)^{2023}+(0+1)^{2024}=1+(-1)+1=1$

 

AH
Akai Haruma
Giáo viên
13 tháng 12 2023

B.

$x^2+2xy+6x+6y+2y^2+8=0$

$\Leftrightarrow (x^2+2xy+y^2)+y^2+6x+6y+8=0$

$\Leftrightarrow (x+y)^2+6(x+y)+9+y^2-1=0$

$\Leftrightarrow (x+y+3)^2=1-y^2\leq 1$ (do $y^2\geq 0$ với mọi $y$)

$\Rightarrow -1\leq x+y+3\leq 1$

$\Rightarrow -4\leq x+y\leq -2$

$\Rightarrow 2020\leq x+y+2024\leq 2022$

$\Rightarrow A_{\min}=2020; A_{\max}=2022$

30 tháng 5 2021

`A=x(x-6)+10=x^2-6x+10`

`=x^2 -2.x .3 + 3^2 + 1`

`=(x-3)^2+1 >0 forall x`

`B=x^2-2x+9y^2-6y+3`

`=(x^2-2x+1)+(9y^2-6y+1)+1`

`=(x-1)^2+(3y-1)^2+1 > 0 forall x,y`.

 

17 tháng 8 2018

Bạn nên tách ra hỏi từng bài sẽ có nhiều người giải hơn nhé. Mà bài 2 với 3 lỗi đề rồi, đọc chẳng hiểu đề

9 tháng 8 2023

a)\(2x^2+3x+5=0\)

\(\Leftrightarrow4x^2+6x+10=0\)

\(\Leftrightarrow\left(2x\right)^2+2.2x.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{31}{4}=0\)

\(\Leftrightarrow\left(2x+\dfrac{3}{2}\right)^2=-\dfrac{31}{4}\left(vn\right)\)

b) PT \(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2=-1\left(vn\right)\) ( do \(VT\ge0\forall x,y\) )

c) PT \(\Leftrightarrow\left(x^2-2xy+y^2\right)+y^2+2x-6y+10=0\)

\(\Leftrightarrow\left(x-y\right)^2+2\left(x-y\right)+1+y^2-4y+4+5=0\)

\(\Leftrightarrow\left(x-y+1\right)^2+\left(y-2\right)^2=-5\left(vn\right)\)

Vậy PT vô nghiệm

a: 2x^2+3x+5=0

=>x^2+3/2x+5/2=0

=>x^2+2*x*3/4+9/16+31/16=0

=>(x+3/4)^2+31/16=0(vô lý)

b: x^2-2x+y^2-4y+6=0

=>x^2-2x+1+y^2-4y+4+1=0

=>(x-1)^2+(y-2)^2+1=0(vô lý)