K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=(3^4)^7-(3^3)^9-(3^2)^13

=3^28-3^27-3^26

=3^26.3^2-3^26.3-3^26.1

=3^26.(3^2-3-1)=3^26.5=3^22.3^4.5=3^22.405

Vậy 81^7-27^9-9^13 luôn chia hết cho 405

5 tháng 7 2023

81^7 - 27^9 - 9^13
= (3^4)^7 - (3^3)^9 - (3^2)^13
= 3^28 - 3^27 - 3^26
= (3^26.3^2) - (3^26.3^1) - (3^26.1)
= 3^26.(9 - 3 - 1)
= 3^22.(3^4.5)
= 3^22.405 chia hết cho 405
=> 81^7 - 27^9-9^13 chia hết cho 405

5 tháng 7 2023

Không chia hết đâu bạn ơi

 

 

14 tháng 7 2016

Tham khảo nha Câu hỏi của Đỗ Thị Thu Trang - Toán lớp 6 - Học toán với OnlineMath

 

14 tháng 7 2016

bn lm giúp mk đc k

21 tháng 9 2017

de ma

18 tháng 8 2017

a)Vì 4 chia 3 dư 1

=>4^2018 chia 3 dư 1^2018=1

=>462018-1 chia hết cho 3

b)Ta có:
5^2019=(5^2)^1009*5

            =25^1009*5

             =...25*5

            =...25

=>5^2019-1=...24

Vì 2 cs tận cùng của ...24 là 24 chia hết cho 4

=>5^2019-1 chia hết cho 4

Vậy......

18 tháng 8 2017

Ta có:

\(4^{2018}-1=4^{2018}-4^{2017}+4^{2017}-4^{2016}+4^{2016}-4^{2015}+...+4-1\)

\(=4^{2017}\left(4-1\right)+4^{2016}\left(4-1\right)+4^{2015}\left(4-1\right)+...+1.\left(4-1\right)\)

\(=\left(4-1\right)\left(4^{2017}+4^{2016}+4^{2015}+...+1\right)=3\left(4^{2017}+4^{2016}+4^{2015}+...+1\right)⋮3\)

Vậy \(4^{2018}-1⋮3\)

Chứng minh tương tự \(5^{2019}-1⋮4\)

19 tháng 8 2017

a, Ta có: \(4\equiv1\left(mod3\right)\)

\(\Rightarrow4^{2018}\equiv1\left(mod3\right)\)

\(\Rightarrow4^{2018}-1⋮3\)

b, Ta có: \(5\equiv1\left(mod4\right)\)

\(\Rightarrow5^{2019}\equiv1\left(mod4\right)\)

\(\Rightarrow5^{2019}-1⋮4\)

c, \(4\equiv-1\left(mod5\right)\)

\(\Rightarrow4^{2019}\equiv-1\left(mod5\right)\)

\(\Rightarrow4^{2019}+1⋮5\)

d, \(5\equiv-1\left(mod6\right)\)

\(\Rightarrow5^{2017}\equiv-1\left(mod6\right)\)

\(\Rightarrow5^{2017}+1⋮6\)

19 tháng 8 2017

1. Vì \(4\) chia \(3\)\(1\)

\(\Rightarrow4^{2018}\) chia \(3\)\(1^{2018}=1.\)

\(\Rightarrow4^{2018}-1\) chia hết cho \(3.\)

14 tháng 10 2021

\(a,=7^4\left(7^2+7-1\right)=7^4\cdot55=7^4\cdot5\cdot11⋮11\)

14 tháng 10 2021

\(7^6+7^5-7^4=7^4\cdot55⋮11\)

13 tháng 10 2016

Ta có : \(6^9+6^{10}+6^{11}=6^9\left(1+6+6^2\right)=6^9.43\)chia hết cho 43

Vậy : \(6^9+6^{10}+6^{11}\)chia hết cho 43 (đpcm)

15 tháng 2 2019

Vì a,b là các số nguyên dương nên:

\(4^a\equiv1\left(mod3\right)\)

\(\Rightarrow4^a+2\equiv0\left(mod3\right)\)

Mà \(4^a+2\equiv0\left(mod2\right)\)

\(\Rightarrow4^a+2\equiv0\left(mod6\right)\) vì \(\left(2;3\right)=1\)

Ta có:\(4^a+a+b=\left(4^a+2\right)+\left(a+1\right)+\left(b+2007\right)-2010⋮6\)

Vậy \(4^a+a+b⋮6\)

16 tháng 2 2019

lm lại (đầy đủ hơn) haizz

\(4\equiv1\left(\text{mod 3}\right)\Rightarrow4^a\equiv1^a\left(\text{mod 3}\right)\Rightarrow4^a\equiv1\left(\text{mod 3}\right)\)

\(4^a+a+b=4^a+a+1+b+2006-2007\)

vì a+1 và a+2007 chia hết cho 6=>a+b+2008 chia hết cho 3=>a+b+2007 chia 3 dư 2=>4^a+a+b chia hết cho 3 và 2007 chia hết cho 3=>4^a+a+b chia hết cho 3

a+1 và b+2007 chia hết cho 6=>a+1 chia hết cho 2=>a lẻ và  b lẻ

4^a+a+b chẵn=>4^a+a+b chia hết cho 2=> 4^a+a+b chia hết cho 2.3 hay chia hết cho 6

Vậy: 4^a+a+b chia hết cho 6 (đpcm)