Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi UCLN(3n + 1; 5n +2 ) = d, ta có
3n + 1 chia hết cho d và 5n + 2 chia hết cho d
=> 3( 5n + 2 ) - 5 ( 3n + 1 ) chia hết cho d
=>(15n + 6) - ( 15n + 5 ) chia hết cho d => 1 chia hết cho d
=> d E Ư(1) = { 1 }
=> d = 1
Gọi ƯCLN(3n + 1; 5n +2 ) = d, ta có
3n + 1 chia hết cho d và 5n + 2 chia hết cho d
=> 3( 5n + 2 ) - 5 ( 3n + 1 ) chia hết cho d
=>(15n + 6) - ( 15n + 5 ) chia hết cho d => 1 chia hết cho d
=> d E Ư(1) = { 1 }
=> d = 1
a: Gọi d=ƯCLN(15n+1;30n+1)
=>30n+2-30n-1 chia hết cho d
=>1 chia hết cho d
=>Đây là phân số tối giản
b: Gọi d=ƯCLN(3n+2;5n+3)
=>15n+10-15n-9 chia hết cho d
=>1 chia hết cho d
=>d=1
=>Phân số tối giản
\(a,\) Gọi \(d=ƯCLN\left(n+1;n+2\right)\)
\(\Rightarrow n+1⋮d;n+2⋮d\\ \Rightarrow n+2-n-1⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)
Vậy \(ƯCLN\left(n+1;n+2\right)=1\) hay n+1 và n+2 ntcn
\(b,\) Gọi \(d=ƯCLN\left(3n+10;3n+9\right)\)
\(\Rightarrow3n+10⋮d;3n+9⋮d\\ \Rightarrow3n+10-3n-9⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)
Vậy 3n+10 và 3n+9 ntcn
Gọi d là ước chung lớn nhất của 2 số. Nhiệm vụ của ta là chứng minh d=1.
a) 2n+3, n+2 \(⋮d\)
\(\Rightarrow\left(2n+3\right)-\left(n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
b) n+1, 3n+4
\(\Rightarrow\left(3n+4\right)-3\left(n+1\right)⋮d\)
\(\Rightarrow1⋮d\)
c) 2n+3, 3n+4
\(\Rightarrow3\left(2n+3\right)-2\left(3n+4\right)⋮d\)
\(\Rightarrow1⋮d\)
𝓪, 𝓖𝓸̣𝓲 𝓤̛𝓒𝓛𝓝\(\left(2n+3,n+2\right)=d\)
\(\Rightarrow2n+3⋮d\)
\(\Rightarrow n+2⋮d\Rightarrow2.\left(n+2\right)⋮d\Rightarrow2n+4⋮d\)
\(\Rightarrow2n+4-2n+3⋮d\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow\)𝓤̛𝓒𝓛𝓝\(\left(2n+3,n +2\right)=1\)
𝓥𝓪̣̂𝔂 \(2n+3,n+2\) 𝓵𝓪̀ 𝓱𝓪𝓲 𝓼𝓸̂́ 𝓷𝓰𝓾𝔂𝓮̂𝓷 𝓽𝓸̂́ 𝓬𝓾̀𝓷𝓰 𝓷𝓱𝓪𝓾
A)
với n chẵn
=>3n+2 chẵn
=> (n+1)(3n+2) chẵn
với n lẻ => = 2k+1(k là số tự nhiên)
n+1=2k+1+1=2k+2 chẵn
=> (n+1)(3n+2) chẵn
=> vậy với mọi n thì (n+1)(3n+2) chẵn
B)
với m chẵn , n chẵn =>m.n chẵn
=> m.n(m+n) chẵn
với m chẵn , n lẻ => m.n chẵn
=> m.n(m+n) chẵn
với m lẻ , n chẵn => m.n chẵn
=> m.n(m+n) chẵn
với m lẻ , n lẻ => ( m+n) chẵn
=> m.n(m+n) chẵn
=> vậy với mọi m,n là số tự nhiên thì m.n(m+n) chẵn
học tốt
a)
*Nếu n=2k(k thuộc N) suy ra 3n+2=6k+2 là số chẵn nên (n+1)(3n+1) là số chẵn (1)
*Nếu n=2k+1(k thuộc N) suy ra n+1=2k+2 là số chẵn nên (n+1)(3n+1) là số chẵn (2)
Từ (1) và (2) suy ra với mọi số tự nhiên n thì (n+1)(3n+1) đều là số chẵn(Đpcm)
b)Ta có:
mn(m+n)=mn[(m-1)-(n-1)]=mn(m-1)-,mn(n-1)
Ta thấy m(m-1) và n(n-1) là hai số tự nhiên liên tiếp nên chúng luôn chia hết cho 2 suy ra chúng là số chẵn suy ra mn(m+n) là số chẵn(đpcm)
Thanks!