K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn đang giải quyết vấn đề gì  Chứng minh một bất đẳng thức liên quan đến giá trị tuyệt đối của các số thực a,b,ca comma b comma c𝑎,𝑏,𝑐 Thông tin hữu ích 
  • Bất đẳng thức tam giác: |x|+|y|≥|x+y|the absolute value of x end-absolute-value plus the absolute value of y end-absolute-value is greater than or equal to the absolute value of x plus y end-absolute-value|𝑥|+|𝑦|≥|𝑥+𝑦|.
  • Bất đẳng thức tam giác mở rộng: |x|+|y|+|z|≥|x+y+z|the absolute value of x end-absolute-value plus the absolute value of y end-absolute-value plus the absolute value of z end-absolute-value is greater than or equal to the absolute value of x plus y plus z end-absolute-value|𝑥|+|𝑦|+|𝑧|≥|𝑥+𝑦+𝑧|
Cách giải  Sử dụng bất đẳng thức tam giác để chứng minh từng phần của bất đẳng thức. 
  1. Bước 1 . Chứng minh |a|+|b|+|c|+|a+b|+|b+c|+|c+a|≥13|5a+4b|the absolute value of a end-absolute-value plus the absolute value of b end-absolute-value plus the absolute value of c end-absolute-value plus the absolute value of a plus b end-absolute-value plus the absolute value of b plus c end-absolute-value plus the absolute value of c plus a end-absolute-value is greater than or equal to 1 over 3 end-fraction the absolute value of 5 a plus 4 b end-absolute-value|𝑎|+|𝑏|+|𝑐|+|𝑎+𝑏|+|𝑏+𝑐|+|𝑐+𝑎|≥13|5𝑎+4𝑏|.
    • Ta có 3(|a|+|b|+|a+b|)≥|3a+3b|3 open paren the absolute value of a end-absolute-value plus the absolute value of b end-absolute-value plus the absolute value of a plus b end-absolute-value close paren is greater than or equal to the absolute value of 3 a plus 3 b end-absolute-value3(|𝑎|+|𝑏|+|𝑎+𝑏|)≥|3𝑎+3𝑏|.
    • Ta có 3(|a|+|b|+|c|+|a+b|+|b+c|+|c+a|)≥|3a+3b+3c+3a+3b+3c|=|6a+6b+6c|3 open paren the absolute value of a end-absolute-value plus the absolute value of b end-absolute-value plus the absolute value of c end-absolute-value plus the absolute value of a plus b end-absolute-value plus the absolute value of b plus c end-absolute-value plus the absolute value of c plus a end-absolute-value close paren is greater than or equal to the absolute value of 3 a plus 3 b plus 3 c plus 3 a plus 3 b plus 3 c end-absolute-value equals the absolute value of 6 a plus 6 b plus 6 c end-absolute-value3(|𝑎|+|𝑏|+|𝑐|+|𝑎+𝑏|+|𝑏+𝑐|+|𝑐+𝑎|)≥|3𝑎+3𝑏+3𝑐+3𝑎+3𝑏+3𝑐|=|6𝑎+6𝑏+6𝑐|.
    • Áp dụng bất đẳng thức tam giác:
      • |a|+|a|+|a|+|b|+|b|≥|3a+2b|the absolute value of a end-absolute-value plus the absolute value of a end-absolute-value plus the absolute value of a end-absolute-value plus the absolute value of b end-absolute-value plus the absolute value of b end-absolute-value is greater than or equal to the absolute value of 3 a plus 2 b end-absolute-value|𝑎|+|𝑎|+|𝑎|+|𝑏|+|𝑏|≥|3𝑎+2𝑏|.
      • |a|+|b|+|a+b|≥|2a+2b|the absolute value of a end-absolute-value plus the absolute value of b end-absolute-value plus the absolute value of a plus b end-absolute-value is greater than or equal to the absolute value of 2 a plus 2 b end-absolute-value|𝑎|+|𝑏|+|𝑎+𝑏|≥|2𝑎+2𝑏|.
    • Xét |5a+4b|=|(a+b)+(a+b)+(a+b)+a+a+b|the absolute value of 5 a plus 4 b end-absolute-value equals the absolute value of open paren a plus b close paren plus open paren a plus b close paren plus open paren a plus b close paren plus a plus a plus b end-absolute-value|5𝑎+4𝑏|=|(𝑎+𝑏)+(𝑎+𝑏)+(𝑎+𝑏)+𝑎+𝑎+𝑏|.
    • Ta có |5a+4b|=|(a+b)+(a+b)+(a+b)+a+a+b|the absolute value of 5 a plus 4 b end-absolute-value equals the absolute value of open paren a plus b close paren plus open paren a plus b close paren plus open paren a plus b close paren plus a plus a plus b end-absolute-value|5𝑎+4𝑏|=|(𝑎+𝑏)+(𝑎+𝑏)+(𝑎+𝑏)+𝑎+𝑎+𝑏|.
    • Áp dụng bất đẳng thức tam giác:
      • |a|+|b|+|a+b|≥|2a+2b|the absolute value of a end-absolute-value plus the absolute value of b end-absolute-value plus the absolute value of a plus b end-absolute-value is greater than or equal to the absolute value of 2 a plus 2 b end-absolute-value|𝑎|+|𝑏|+|𝑎+𝑏|≥|2𝑎+2𝑏|.
      • |a|+|b|+|c|+|a+b|+|b+c|+|c+a|≥13|5a+4b|the absolute value of a end-absolute-value plus the absolute value of b end-absolute-value plus the absolute value of c end-absolute-value plus the absolute value of a plus b end-absolute-value plus the absolute value of b plus c end-absolute-value plus the absolute value of c plus a end-absolute-value is greater than or equal to 1 over 3 end-fraction the absolute value of 5 a plus 4 b end-absolute-value|𝑎|+|𝑏|+|𝑐|+|𝑎+𝑏|+|𝑏+𝑐|+|𝑐+𝑎|≥13|5𝑎+4𝑏|.
    • Ta có 3(|a|+|b|+|a+b|)≥|3a+3b|3 open paren the absolute value of a end-absolute-value plus the absolute value of b end-absolute-value plus the absolute value of a plus b end-absolute-value close paren is greater than or equal to the absolute value of 3 a plus 3 b end-absolute-value3(|𝑎|+|𝑏|+|𝑎+𝑏|)≥|3𝑎+3𝑏|.
    • Ta có 3(|a|+|b|+|c|+|a+b|+|b+c|+|c+a|)≥|5a+4b|+|5b+4c|+|5c+4a|3 open paren the absolute value of a end-absolute-value plus the absolute value of b end-absolute-value plus the absolute value of c end-absolute-value plus the absolute value of a plus b end-absolute-value plus the absolute value of b plus c end-absolute-value plus the absolute value of c plus a end-absolute-value close paren is greater than or equal to the absolute value of 5 a plus 4 b end-absolute-value plus the absolute value of 5 b plus 4 c end-absolute-value plus the absolute value of 5 c plus 4 a end-absolute-value3(|𝑎|+|𝑏|+|𝑐|+|𝑎+𝑏|+|𝑏+𝑐|+|𝑐+𝑎|)≥|5𝑎+4𝑏|+|5𝑏+4𝑐|+|5𝑐+4𝑎|.
    • Ta có |a|+|b|+|a+b|≥|2a+2b|the absolute value of a end-absolute-value plus the absolute value of b end-absolute-value plus the absolute value of a plus b end-absolute-value is greater than or equal to the absolute value of 2 a plus 2 b end-absolute-value|𝑎|+|𝑏|+|𝑎+𝑏|≥|2𝑎+2𝑏|.
    • Ta có |a|+|b|+|c|+|a+b|+|b+c|+|c+a|≥13(|5a+4b|+|5b+4c|+|5c+4a|)the absolute value of a end-absolute-value plus the absolute value of b end-absolute-value plus the absolute value of c end-absolute-value plus the absolute value of a plus b end-absolute-value plus the absolute value of b plus c end-absolute-value plus the absolute value of c plus a end-absolute-value is greater than or equal to 1 over 3 end-fraction open paren the absolute value of 5 a plus 4 b end-absolute-value plus the absolute value of 5 b plus 4 c end-absolute-value plus the absolute value of 5 c plus 4 a end-absolute-value close paren|𝑎|+|𝑏|+|𝑐|+|𝑎+𝑏|+|𝑏+𝑐|+|𝑐+𝑎|≥13(|5𝑎+4𝑏|+|5𝑏+4𝑐|+|5𝑐+4𝑎|).
Lời giải  Bất đẳng thức cần chứng minh là |a|+|b|+|c|+|a+b|+|b+c|+|c+a|≥13(|5a+4b|+|5b+4c|+|5c+4a|)the absolute value of a end-absolute-value plus the absolute value of b end-absolute-value plus the absolute value of c end-absolute-value plus the absolute value of a plus b end-absolute-value plus the absolute value of b plus c end-absolute-value plus the absolute value of c plus a end-absolute-value is greater than or equal to 1 over 3 end-fraction open paren the absolute value of 5 a plus 4 b end-absolute-value plus the absolute value of 5 b plus 4 c end-absolute-value plus the absolute value of 5 c plus 4 a end-absolute-value close paren|𝑎|+|𝑏|+|𝑐|+|𝑎+𝑏|+|𝑏+𝑐|+|𝑐+𝑎|≥13(|5𝑎+4𝑏|+|5𝑏+4𝑐|+|5𝑐+4𝑎|).
27 tháng 8 2016

a/ Ta có: \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c};c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=k^3\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=k^3\)

Áp dụng tính chất của tỉ lệ thức ta có:\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=k^3\)

Mặt khác: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\Rightarrow\frac{a+b+c}{b+c+d}=k\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=k^3\)

\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(=k^3\right)\)

27 tháng 8 2016

giup minh nha: Tinh nhanh lop 4

42 x 43 - 12 x 9 - 42 x 3

25 tháng 3 2018

Gợi ý : 
Bước 1 : Cộng 6 vào các hạng tử đã cho ở đề bài 

Bước 2 : xét 2 TH : 
TH1 : a + b + c = 0 

TH2 : a + b + c khác 0 

Chúc học tốt !!!! 

9 tháng 6 2015

Gọi \(\frac{a}{b}=\frac{c}{d}=x\Rightarrow a=bx;c=dx\)

Thay vào vế trái ta được 

\(\frac{3a-5c}{4a+7c}=\frac{3.bx-5.dx}{4.bx+7.dx}=\frac{x\left(3b-5d\right)}{x\left(4b+7d\right)}=\frac{3b-5d}{4b+7d}\)

Vậy vế trái bằng vế phải

10 tháng 6 2015

Ta có:\(\frac{a}{b}=\frac{c}{d}=\frac{3a-5c}{3b-5d}\left(1\right)\)

Ta lại có:\(\frac{a}{b}=\frac{c}{d}=>\frac{4a+7c}{4b+7d}\left(2\right)\)

Từ (1) và (2),suy ra : \(\frac{3a-5c}{4a+7c}=\frac{3b-5d}{4b+7d}\)

Cách của mình cũng đúng nhưng khác cách làm của thang Tam thôi

30 tháng 9 2017

Bài 1

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Ta có:

\(\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{b\left(5k+3\right)}{b\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\left(1\right)\)

\(\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{d\left(5k+3\right)}{d\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) suy ra \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\left(đpcm\right)\)

Vậy .....

Bài 2

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)

\(\Leftrightarrow\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)

\(\Leftrightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\left(đpcm\right)\)

Vậy .....

Chúc bạn học tốt!

29 tháng 11 2019

Các bạn giúp mình nhé ! Mình đang cần gấp

Ta có: \(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{b+a+d}=\frac{d}{c+b+a}\)

\(\Rightarrow\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{b+a+d}+1=\frac{d}{c+b+a}+1\)

\(\Rightarrow\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{b+a+d}=\frac{a+b+c+d}{c+b+a}\)

Mà a+b+c+d khác 0

=> b+c+d = a+c+d = b+a+d = c+b+a

=> b = a = c = d

Ta có:

\(P=\frac{2a+5b}{3c+4d}-\frac{2b+5c}{3d+4a}-\frac{2c+5d}{3a+4b}-\frac{2d+5a}{3c+4b}\)

\(P=\frac{2a+5a}{3a+4a}-\frac{2b+5b}{3b+4b}-\frac{2c+5d}{3c+4c}-\frac{2d+5d}{3d+4d}\)

\(P=\frac{7a}{7a}-\frac{7b}{7b}-\frac{7c}{7c}-\frac{7d}{7d}\)

\(P=1-1-1-1=-2\)