Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{5a+5b-c}{c}=\frac{5b+5c-a}{a}=\frac{5c+5a-b}{b}\)
\(\Leftrightarrow\)\(\frac{5a+5b-c}{c}+1=\frac{5b+5c-a}{a}+1=\frac{5c+5a-b}{b}+1\)
\(\Leftrightarrow\)\(\frac{5a+5b}{c}=\frac{5b+5c}{a}=\frac{5c+5a}{b}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{5a+5b}{c}=\frac{5b+5c}{a}=\frac{5c+5a}{b}=\frac{5a+5b+5b+5c+5c+5a}{a+b+c}=\frac{10\left(a+b+c\right)}{a+b+c}=10\)
Do đó :
\(\frac{5a+5b}{c}=10\)\(\Leftrightarrow\)\(5a+5b=10c\)\(\Leftrightarrow\)\(a+b=2c\) \(\left(1\right)\)
\(\frac{5b+5c}{a}=10\)\(\Leftrightarrow\)\(5b+5c=10a\)\(\Leftrightarrow\)\(b+c=2a\) \(\left(2\right)\)
\(\frac{5c+5a}{b}=10\)\(\Leftrightarrow\)\(5c+5a=10b\)\(\Leftrightarrow\)\(c+a=2b\) \(\left(3\right)\)
Thay (1), (2) và (3) vào \(P=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{16120abc}\) ta được :
\(P=\frac{2c.2a.2b}{16120abc}=\frac{8abc}{16120abc}=\frac{1}{2015}\)
Vậy \(P=\frac{1}{2015}\)
Chúc bạn học tốt ~
Câu hỏi của Chu Hoàng THủy Tiên - Toán lớp 7 - Học toán với OnlineMath
1) Ta có : \(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)
Trừ 4 vế với 2015 ta được : \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Nếu a + b + c + d = 0
=> a + b = -(c + d)
=> b + c = (-a + d)
=> c + d = -(a + b)
=> d + a = (-b + c)
Khi đó M = (-1) + (-1) + (-1) + (-1) = - 4
Nếu a + b + c + d\(\ne0\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)
Khi đó M = 1 + 1 + 1 + 1 = 4
2) a) Ta có : \(\hept{\begin{cases}\left|x+2013\right|\ge0\forall x\\\left(3x-7\right)^{2004}\ge0\forall y\end{cases}\Rightarrow\left|x+2013\right|+\left(3x-7\right)^{2014}\ge0}\)
Dấu "=" xảy ra \(\hept{\begin{cases}x+2013=0\\3y-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2013\\y=\frac{7}{3}\end{cases}}}\)
b) 72x + 72x + 3 = 344
=> 72x + 72x.73 = 344
=> 72x.(1 + 73) = 344
=> 72x = 1
=> 72x = 70
=> 2x = 0 => x = 0
c) Ta có :
\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{x+4}\Leftrightarrow\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2x+8}=\frac{7-10}{2x+2-2x-8}=\frac{1}{2}\)(dãy tỉ số bằng nhau)
=> 2x + 2 = 14 => x = 6 ;
2y - 4 = 6 => y = 5 ;
6 + 5 + z = 17 => z = 6
Vậy x = 6 ; y = 5 ; z = 6
3) a) Ta có : \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)(dãy ti số bằng nhau)
=> a + b + c = a + b - c => a + b + c - a - b + c = 0 => 2c = 0 => c = 0;
Lại có : \(\frac{a+b+c}{a+b-c}-1=\frac{a-b+c}{a-b-c}-1\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Rightarrow a+b-c=a-b-c\) => b = 0
Vậy c = 0 hoặc b = 0
c) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=2\)(dãy tỉ số bằng nhau)
=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)
Khi đó P = \(\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{b}{a}\right)=\frac{b+c}{b}.\frac{c+a}{c}=\frac{a+b}{a}=\frac{2a.2b.2c}{abc}=8\)
Vậy P = 8
2. b) \(7^{2x}+7^{2x+3}=344\)
\(7^{2x}\cdot\left(1+7^3\right)=344\)
\(7^{2x}\cdot\left(1+343\right)=344\)
\(7^{2x}\cdot344=344\)
\(7^{2x}=1\)
\(7^{2x}=7^0\)
\(2x=0\)
\(x=0\)
b) Ta có:
\(\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Rightarrow\frac{1}{c}.2=\frac{a}{ab}+\frac{b}{ab}\)
\(\Rightarrow\frac{2}{c}=\frac{a+b}{ab}.\)
\(\Rightarrow2ab=\left(a+b\right).c\)
\(\Rightarrow ab+ab=ac+bc\)
\(\Rightarrow ab-bc=ac-ab\)
\(\Rightarrow b.\left(a-c\right)=a.\left(c-b\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right).\)
Chúc bạn học tốt!
P/s: Bài toán này khá hay đó !!
Ta có : \(a\left(\frac{1}{b}+\frac{1}{c}\right)=b\left(\frac{1}{a}+\frac{1}{c}\right)=c\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Leftrightarrow\frac{a^2c+a^2b}{abc}=\frac{b^2c+ab^2}{abc}=\frac{c^2b+c^2a}{abc}\)
Mà : \(a,b,c>0\)
\(\Rightarrow a^2c+a^2b=b^2c+ab^2=c^2b+c^2a\)
+) Xét : \(a^2c+a^2b=b^2c+ab^2\)
\(\Leftrightarrow ab\left(a-b\right)+c\left(a^2-b^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(ab+ca+cb\right)=0\)
\(\Leftrightarrow a-b=0\Leftrightarrow a=b\) (1)
( Do \(a,b,c>0\Rightarrow ab+ca+cb>0\) )
+) Xét \(b^2c+ab^2=c^2b+c^2a\)
\(\Leftrightarrow bc\left(b-c\right)+a\left(b^2-c^2\right)=0\)
\(\Leftrightarrow\left(b-c\right)\left(bc+ab+ac\right)=0\)
\(\Leftrightarrow b-c=0\Leftrightarrow b=c\)(2)
( Do \(a,b,c>0\Rightarrow ab+ca+cb>0\) )
Từ (1) và (2) \(\Rightarrow a=b=c\) (đpcm)
Bài làm:
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{c+a+b}\)
\(=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\c+a-b=b\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b+c=3c\\a+b+c=3a\\a+b+c=3b\end{cases}}\Rightarrow a=b=c\)
Thay vào ta tính được:
\(B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)\)
\(B=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2^3=8\)
Vậy B = 8
Ta có : \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
\(\Rightarrow\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)
\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
Nếu a + b + c = 0
=> a + b = -c
=> a + c = -b
=> b + c = -a
Khi đó B = \(\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}.\frac{a+c}{c}.\frac{b+c}{b}=\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}=-\frac{abc}{abc}=-1\)
Nếu a + b + c \(\ne\)0
=> \(\frac{1}{c}=\frac{1}{a}=\frac{1}{b}\Rightarrow a=b=c\)
Khi đó B = \(\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2.2.2=8\)
Vậy khi a + b + c = 0 => B = -1
khi a + b + c \(\ne\)0 => B = 8
Gợi ý :
Bước 1 : Cộng 6 vào các hạng tử đã cho ở đề bài
Bước 2 : xét 2 TH :
TH1 : a + b + c = 0
TH2 : a + b + c khác 0
Chúc học tốt !!!!